1 | Schernthaner G, Gross JL, Rosenstock J, et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care. 2013;36(9):2508-2515. |
2 | Stenlöf K, Cefalu WT, Kim KA, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15(4):372-382. |
3 | Lavalle-González FJ, Januszewicz A, Davidson J, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56(12):2582-2592. |
4 | Cefalu WT, Leiter LA, Yoon KH, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013;382(9896):941-950. |
5 | Neal B, Perkovic V, de Zeeuw D, et al. Efficacy and safety of canagliflozin, an inhibitor of sodium glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care. 2015;38(3):403-411. |
6 | Fulcher G, Matthews DR, Perkovic V, et al. Efficacy and safety of canagliflozin used in conjunction with sulfonylurea in patients with type 2 diabetes mellitus: a randomized, controlled trial. Diabetes Ther. 2015;6(3):289-302. |
7 | Wilding JP, Charpentier G, Hollander P, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract. 2013;67(12):1267-1282. |
8 | Forst T, Guthrie R, Goldenberg R, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes Metab. 2014;16(5):467-477. |
9 | Bode B, Stenlöf K, Sullivan D, et al. Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: a randomized trial. Hosp Pract (1995). 2013;41(2):72-84. |
10 | Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295-2306. |
11 | Perkovic V, Jardine MJ, Neal B, et al. Supplement to: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295-2306. |
12 | Jardine MJ, Mahaffey KW, Neal B, et al. The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) study rationale, design, and baseline characteristics. Am J Nephrol. 2017;46(6):462-472. |
13 | Neal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(21):2099. |
14 | Yale JF, Bakris G, Cariou B, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013;15(5):463-473. |
15 | Stenlöf K, Cefalu WT, Kim KA, et al. Long-term efficacy and safety of canagliflozin monotherapy in patients with type 2 diabetes inadequately controlled with diet and exercise: findings from the 52-Week CANTATA-M Study. Curr Med Res Opin. 2014;30(2):163-175. |
16 | Yale JF, Bakris G, Cariou B, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes mellitus and chronic kidney disease. Diabetes Obes Metab. 2014;16(10):1016-1027. |
17 | Bode B, Stenlöf K, Harris S, et al. Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55-80 years with type 2 diabetes. Diabetes Obes Metab. 2015;17(3):294-303. |
18 | Leiter LA, Yoon KH, Arias P, et al. Canagliflozin provides durable glycemic improvements and body weight reduction over 104 weeks versus glimepiride in patients with type 2 diabetes on metformin: a randomized, double-blind, phase 3 study. Diabetes Care. 2015;38(3):355-364. |
19 | Toubro S, Cefalu WT, Xie J, et al. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, reduces body weight mainly through loss of fat mass in subjects with type 2 diabetes. Poster presented at: the 48th Annual Meeting of the European Association for the Study of Diabetes (EASD); October 1-5, 2012; Berlin, Germany. |
20 | Bailey RA, Vijapurkar U, Meininger GE, et al. Diabetes-related quality measure attainment: canagliflozin versus sitagliptin based on a pooled analysis of 2 clinical trials. Am J Manag Care. 2014;20(Suppl. 13):S296-S305. |
21 | Khan MS, Usman MS, Siddiqi TJ, et al. Effect of canagliflozin use on body weight and blood pressure at one-year follow-up: A systematic review and meta-analysis. Eur J Prev Cardiol. 2019;26(15):1680-1682. |
22 | Cai J, Delahanty LM, Akapame S, et al. Impact of canagliflozin treatment on health-related quality of life among people with type 2 diabetes mellitus: a pooled analysis of patient-reported outcomes from randomized controlled trials. Patient. 2018;11(3):341-352. |
23 | Blonde L, Wilding J, Chiasson J, et al. Canagliflozin lowers A1C and blood pressure through weight loss-independent and weight loss-associated mechanisms. Abstract presented at: the 73rd Scientific Session of the American Diabetes Association (ADA); June 21-25, 2013; Chicago, IL. |
24 | Schernthaner G, Lavalle-González FJ, Davidson JA, et al. Canagliflozin provides greater attainment of both HbA1c and body weight reduction versus sitagliptin in patients with type 2 diabetes. Postgrad Med. 2016;128(8):725-730. |
25 | Canovatchel W, Davies M, Vijapurkar U, et al. Canagliflozin monotherapy provides reductions in a composite measure of A1C and body weight in patients with type 2 diabetes mellitus [abstract]. Data presented at: the 23rd Annual Scientific and Clinical Congress of the American Association of Clinical Endocrinologists (AACE); May 14-18, 2014; Las Vegas, NV. |
26 | Rosenstock J, Aggarwal N, Polidori D, et al. Dose-ranging effects of canagliflozin as a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012;35(6):1232-1238. |
27 | Qiu R, Capuano G, Meininger G. Efficacy and safety of twice-daily treatment with canagliflozin, a sodium glucose co- transporter 2 inhibitor, added on to metformin monotherapy in patients with type 2 diabetes mellitus. J Clin Transl Endocrinol. 2014;1(2):54-60. |
28 | Inagaki N, Kondo K, Yoshinari T, et al. Efficacy and safety of canagliflozin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, 12-week study. Diabetes Obes Metab. 2013;15(12):1136-1145. |
29 | Bays HE, Weinstein R, Law G, et al. Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obesity (Silver Spring). 2014;22(4):1042-1049. |
30 | Ji L, Han P, Liu Y, et al. Canagliflozin in asian patients with type 2 diabetes on metformin alone or metformin in combination with sulphonylurea. Diabetes Obes Metab. 2015;17(1):23-31. |
31 | Inagaki N, Kondo K, Yoshinari T, et al. Efficacy and safety of canagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled with diet and exercise: a 24-week, randomized, double-blind, placebo-controlled, phase III study. Expert Opin Pharmacother. 2014;15(11):1501-1515. |
32 | Bailey RA, Damaraju CV, Martin SC, et al. Attainment of diabetes-related quality measures with canagliflozin versus sitagliptin. Am J Manag Care. 2014;20(Suppl. 1):s16-s24. |
33 | Davies M, Merton K, Vijapurkar U, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes based on history of cardiovascular disease or cardiovascular risk factors: a post hoc analysis of pooled data. Cardiovasc Diabetol. 2017;16(1):40. |
34 | Fulcher G, Matthews DR, Perkovic V, et al. Efficacy and safety of canagliflozin used in conjunction with incretin-mimetic therapy in patients with type 2 diabetes. Diabetes Obes Metab. 2016;18(1):82-91. |
35 | Rosenstock J, Chuck L, González-Ortiz M, et al. Initial combination therapy with canagliflozin plus metformin versus each component as monotherapy for drug-naive type 2 diabetes mellitus. Diabetes Care. 2016;39(3):353-362. |
36 | Yale JF, Xie J, Sherman SE, et al. Canagliflozin in conjunction with sulfonylurea maintains glycemic control and weight loss over 52 weeks: a randomized, controlled trial in patients with type 2 diabetes mellitus. Clin Ther. 2017;39(11):2230-2242.e2. |
37 | Lorenzi M, Ploug UJ, Langer J, et al. Liraglutide versus SGLT-2 inhibitors in people with type 2 diabetes: A network meta-analysis. Diabetes Ther. 2017;8(1):85-99. |
38 | Inagaki N, Harashima SI, Kaku K, et al. Long-term efficacy and safety of canagliflozin in combination with insulin in Japanese patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2018;20(4):812-820. |
39 | Nishimiya N, Tajima K, Imajo K, et al. Effects of canagliflozin on hepatic steatosis, visceral fat and skeletal muscle among patients with type 2 diabetes and non-alcoholic fatty liver disease. Intern Med. 2021;60(21):3391-3399. |
40 | Son C, Makino H, Kasahara M, et al. Comparison of efficacy between dipeptidyl peptidase-4 inhibitor and sodium–glucose cotransporter 2 inhibitor on metabolic risk factors in Japanese patients with type 2 diabetes mellitus: Results from the CANTABILE study. Diabetes Res Clin Pract. 2021;180:109037. |
41 | Zhou S, Zhang Y, Wang T, et al. Canagliflozin could improve the levels of renal oxygenation in newly diagnosed type 2 diabetes patients with normal renal function. Diabetes Metab. 2021;47(5):101274. |
42 | A Sezai, A Tanaka, K Kida, et al. Comparing the effects of canagliflozin vs. glimepiride by body mass index in patients with type 2 diabetes and chronic heart failure: a subanalysis of the CANDLE trial. Biomedicines. 2022;10(7):1656. |
43 | Zhang FP, X J. The efficacy and safety of canagliflozin in the treatment of patients with early diabetic nephropathy. J Physiol Pharmacol. 2022;73(1). |
44 | Zhang J, Xing C, Cheng X, et al. Canagliflozin combined with metformin versus metformin monotherapy for endocrine and metabolic profiles in overweight and obese women with polycystic ovary syndrome: A single-center, open-labeled prospective randomized controlled trial. Front Endocrinol (Lausanne). 2022;13:1003238. |
45 | Cai M, Shao X, Xing F, et al. Efficacy of canagliflozin versus metformin in women with polycystic ovary syndrome: a randomized, open-label, noninferiority trial. Diabetes Obed Metab. 2022;24(2):312-320. |
46 | Isogawa M, Makino H, Son C, et al. Comparison of canagliflozin and teneligliptin on energy intake and body weight in Japanese patients with Type 2 diabetes: a subanalysis of the CANTABILE study. BMC Endocr Disord. 2024;24(1):153. |
47 | Jardine MJ, Mahaffey KW, Neal B, et al. Supplement to: The canagliflozin and renal endpoints in diabetes with established nephropathy clinical evaluation (CREDENCE) study rationale, design, and baseline characteristics. Am J Nephrol. 2017;46(6):462-472. |
48 | Wheeler DC, Bakris G, Jardine MJ, et al. CREDENCE (Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation). Symposium presented at: the 2019 International Society of Nephrology (ISN) World Congress of Nephrology (WCN’19); April 12-15, 2019; Melbourne, AU. Available at: http://www.georgeinstitute.org/sites/default/files/credence-trial-results.pptx Webcast available at: https://www.youtube.com/watch?v=gZC6PSN7Jt8. |
49 | The U.S. Food and Drug Administration (FDA). Janssen Briefing Information for the January 10, 2013 Meeting of the Endocrinologic and Metabolic Drugs Advisory Committee. The U.S. Food and Drug Administration (FDA); 2013. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials%20/Drugs%20/%20EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM334551.pdf Accessed March 13, 2025. |
50 | Leiter L, Langslet G, Vijapurkar U, et al. Simultaneous reduction in both A1C and body weight with canagliflozin versus glimepiride in metformin-treated patients with type 2 diabetes over 104 weeks. Poster presented at: the 24th Annual Scientific And Clinical Congress Of The American Association Of Clinical Endocrinologists (AACE); May 13-17, 2015; Nashville, TN. |
51 | Neal B, Matthews D, Fulcher G, et al. 52-week effects of canagliflozin, an inhibitor of sodium glucose co-transporter 2, added to insulin therapy in type 2 diabetes. Poster presented at: the World Diabetes Congress of the International Diabetes Federation (IDF); December 2-6, 2013; Melbourne, Austalia. |
52 | Matthews D, Fulcher G, Perkovic V, et al. Efficacy and safety of canagliflozin, an inhibitor of sodium glucose co-transporter 2, added on to insulin therapy with or without oral agents in type 2 diabetes. Poster presented at: the 48th Annual Meeting of the European Association for the Study of Diabetes (EASD); October 1-5, 2012; Berlin, Germany. |
53 | Blonde L, Woo V, Mathieu C, et al. Achievement of diabetes-related treatment goals with canagliflozin (CANA) in patients with T2DM. Poster presented at: the 74th Scientific Session of the American Diabetes Association (ADA); June 13-17, 2014; San Francisco, CA. |
54 | Blonde L, Leiter LA, Wilding J, et al. Efficacy of canagliflozin in patients with type 2 diabetes mellitus by baseline body mass index. Poster presented at: the 23rd Annual Scientific and Clinical Congress of the American Association of Clinical Endocrinologists (AACE); May 14-18, 2014; Las Vegas, NV. https://www.janssenmd.com/sites/default/files/pdf/Efficacy%20of%20canagliflozin%20in%20patients%20with%20type%202%20diabetes%20mellitus%20by%20baseline%20body%20mass%20index.pdf |
55 | Devineni D, Curtin C, Polidori D, et al. Pharmacokinetics and pharmacodynamics of canagliflozin, a sodium glucose co- transporter 2 inhibitor, in subjects with type 2 diabetes mellitus. J Clin Pharmacol. 2013;53(6):601-610. |
56 | Sha S, Devineni D, Ghosh A, et al. Pharmacodynamic effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, from a randomized study in patients with type 2 diabetes. PLoS ONE. 2014;9(8):e105638. |
57 | Sha S, Polidori D, Heise T, et al. Effect of the sodium glucose co-transporter 2 inhibitor, canagliflozin, on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2014;16(11):1087-1095. |
58 | Devineni D, Morrow L, Hompesch M, et al. Canagliflozin improves glycaemic control over 28 days in subjects with type 2 diabetes not optimally controlled on insulin. Diabetes Obes Metab. 2012;14(6):539-545. |
59 | Idris I, Donnelly R. Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab. 2009;11(2):79-88. |