Matching-Adjusted Indirect Comparisons of TAR-200 vs. FDA-Approved Novel Agents in Bacillus Calmette-Guérin-Unresponsive High-Risk Non-Muscle-Invasive Bladder Cancer with Carcinoma in Situ

Siamak Daneshmand, MD,¹ Sarah Côté, MSc,² Ruhee Jain, MPH, MBA,³ Xiwu Lin, PhD,⁴ Jianming He, PhD,³ Hussein Sweiti, MD,⁵ Shalaka Hampras, MD,⁵ Félix Guerrero-Ramos, MD, PhD, FEBU⁶

¹University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA; ²Johnson & Johnson Innovative Medicine, Montreal QC, Canada; ³Johnson & Johnson Innovative Medicine, Raritan, NJ, USA; ⁴Johnson & Johnson Innovative Medicine, Horsham, PA, USA; ⁵Johnson & Johnson Innovative Medicine, Springhouse, PA, USA; ⁶University Hospital 12 de Octubre, Madrid, Spain

Key Takeaway

TAR-200 demonstrated significantly higher CR rate at any time over FDA-approved novel agents in BCG-unresponsive HR NMIBC with CIS, as well as at first disease assessment compared with NAI + BCG

Conclusions

TAR-200 is a novel iDRS that offers a convenient fixed duration treatment regimen with a low number of doses for patients with BCG-unresponsive HR NMIBC with CIS, without the need for reinduction

Given that no head-to-head trials exist in this setting, the MAIC provides scientific information for clinical and reimbursement decision making

TAR-200 provides a statistically significant clinical benefit in CR rate at any time vs. pembrolizumab, nadofaragene, and NAI + BCG

TAR-200 also provides a significantly higher CR rate at first disease assessment compared with NAI + BCG

Please scan QR code

Poster

https://www.jnjmedicalconnect.com/media/attestation/congresses/ oncology/2025/western-section-aua/matchingadjusted-indirect-comparisonsof-tar200-vs-fdaapproved-novel-agents-in-bacillus-calmetteguer.pdf

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

Acknowledgments

1220376_MAIC TAR-200 vs other agents (IPSOR 2025 encore)_44W x 44H inch_v3.indd

We thank Thermo Fisher Scientific for their support in developing this poster.

Disclosures

SD: consultancy for Photocure, Pacific Edge, Ferring, BMS, Johnson & Johnson, Protara, Urogen, Pfizer, CG Oncology, Vesica Health, and ImmunityBio; research funding from Photocure and Johnson & Johnson; and personal fees from Johnson & Johnson, Ferring, and CG Oncology.

SC, RJ, XL, JH, HS, and SH: employees and stockholders of Johnson & Johnson. FGR: consultancy for Janssen, Pfizer, Merck, Roche, Taris, Combat Medical, AstraZeneca, MSD, and BMS; speaker's bureau for Janssen, Nucleix, MSD, Pfizer, Merck, BMS, AstraZeneca, Palex, and Combat Medical; research funding from

Combat Medical and Roche; expert testimony for Nucleix; and personal fees from Janssen, Pfizer, Recordati, Ipsen, Combat Medical, Alter, Salvat, Nucleix, AstraZeneca, and Fidia.

Introduction

Results

Product

Mode of

delivery

Dosing

regimen

number of

Definition of

/ariable

Gender

Race

ECOG

Stage

Number of

prior BCG

instillation

Clinical cut off: March 31, 2025.

Ta, non-invasive papillary carcinoma.

Age in years

doses

across trials could not be addressed within the MAIC

treatment of BCG-unresponsive HR NMIBC with CIS

TAR-200

SunRISe-1 (Cohort 2)

Intravesical drug

releasing system

Q3W for the first

6 months; then Q12W

for up to 2 years

14 doses over 2 years

Negative cystoscopy

and negative (including

atypical) centrally

read UC, or positive

cystoscopy w/ biopsy-

proven benign or low-

grade NMIBC and

negative (including

atypical) centrally read

UC at any time, and

biopsy at Weeks 24

Q12W through Week 99

24 weeks thereafter

through Year 3

Categories

Median (range)

Male %

Female %

White %

Median

CIS + T1 %

CIS + Ta %

CIS alone %

Non-White %

Timing of CR (Year 2), and then every

BCG-unresponsive HR NMIBC with CIS

- TAR-200 is a novel intravesical drug releasing system (iDRS) designed for sustained, local delivery of gemcitabine within the bladder
- TAR-200 is being investigated in the Phase 2b SunRISe-1 study for patients with Bacillus Calmette-Guérin (BCG)unresponsive high-risk (HR) non-muscle-invasive bladder cancer (NMIBC) with carcinoma in situ (CIS), with or without papillary tumors, who have refused or are ineligible for radical cystectomy (Cohort 2) TAR-200 has demonstrated a centrally assessed any time complete response (CR) rate of 82.4% in this population¹
- The FDA has approved pembrolizumab, nadofaragene firadenovec-vncg (nadofaragene), and nogapendekin alfa inbakicept-pmln in combination with BCG (NAI + BCG) as novel treatment options in this setting
- In the absence of head-to-head data, matching-adjusted indirect comparisons (MAICs) were conducted to compare the CR rate at any time and at first disease assessment of TAR-200 vs. FDA-approved novel agents

Dosing regimens, modes of delivery, and definitions of CR varied across the SunRISe-1, KEYNOTE-057, CS-003,

required biopsies at Weeks 24 and 48, than what is used in the comparator trials. This difference in definitions

Table 1: Comparison of treatment characteristics and CR definitions in trials investigating novel agents for the

Pembrolizumab

KEYNOTE-057^{2,3}

IV infusion

200 mg Q3W or

400 mg Q6W for

up to 2 years

16 or 34 doses over

2 years

Absence of low-grade

Ta, HR disease, and

progressive disease

(central review) by

negative results for

cystoscopy (with

TURBT/biopsies

as applicable), UC,

and computed

tomography

urography imaging

Q12W for 2 years and

for 3 years

Table 2: Baseline characteristics of patients in trials investigating novel agents for the treatment of

SunRISe-1

(N=85)

71 (40–88)

80.0

20.0

87.1

12.9

91.8

8.2

12

10.6

22.4

67.1

BCG, Bacillus Calmette-Guérin; CIS, carcinoma in situ; ECOG, Eastern Cooperative Oncology Group; HR, high-risk; NMIBC, non-muscle-invasive bladder cancer; T1, tumor invades the subepithelial connective tissue;

Baseline characteristics were similar across all four trials after matching (Table 2)

BGC, Bacillus Calmette-Guérin; CIS, carcinoma in situ; CR, complete response; HR, high-risk; IV, intravenous; nadofaragene, nadofaragene firadenovec-vncg; NAI + BCG, nogapendekin alfa inbakicept-pmln in combination with

KEYNOTE-057

(N=96)

73 (44-92)

84

33

25

63

Bacillus Calmette-Guérin; NMIBC, non-muscle-invasive bladder cancer; Q3W, every 3 weeks; Q6W, every 6 weeks; Q12W, every 12 weeks; QW, weekly; TURBT, transurethral resection of bladder tumor; UC, urine cytology.

and QUILT 3.032 trials (Table 1). The SunRISe-1 trial includes a more stringent disease assessment of CR, including

Nadofaragene

CS-003^{4,5}

Intravesical instillation

followed by dosing

every 3 months for

12 months (4 doses

continue receiving

treatment once

every 3 months

at the discretion

of their treating

4 doses in Year 1

Treat to progression

thereafter (4 doses)

Negative results for

cystoscopy (with

TURBT/biopsies as

applicable) and UC

then every 24 weeks 3, 6, 9, and 12 months Every 3 months for up to 2 years

CS-003

(N=98)

70 (44–89)

88

12

92

90

19

76

physician

1 induction dose

total)

Patients can

NAI + BCG

QUILT 3.032^{6,7}

Intravesical instillation

consecutive weeks. A second

induction may be administered

Maintenance: QW for 3 weeks

Patients with stable disease

receive maintenance dose at

For patients with an ongoing

additional maintenance may be

administered (QW for 3 weeks

Negative results for cystoscopy

(with TURBT/biopsies as

applicable) and UC based on

investigator assessment of urine

cytology, cystoscopy, and local

pathology results

QUILT 3.032

(N=77)

73 (50–91)

86

90

10

83

12

10

21

69

Months 4, 7, 10, 13, and 19

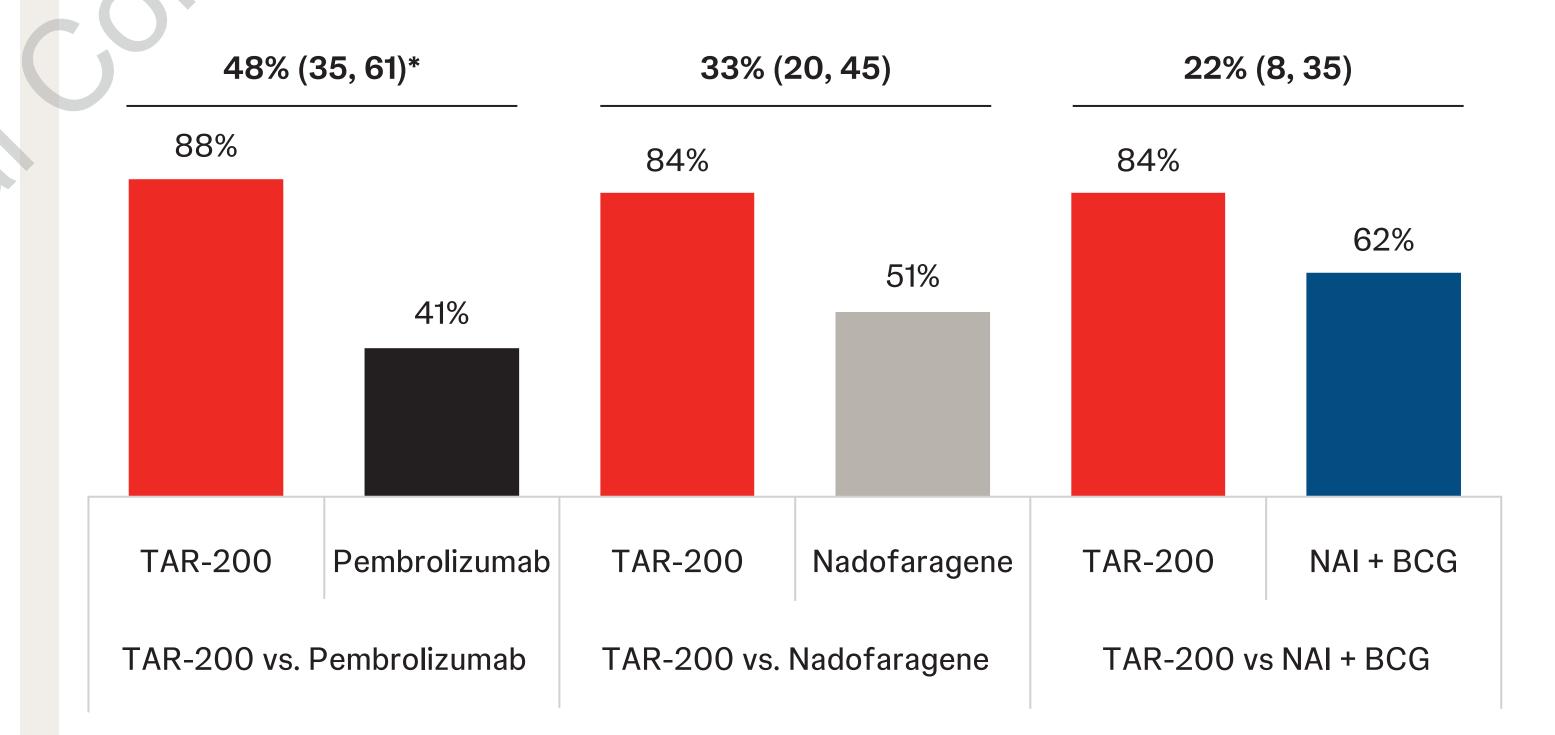
CR at Month 25 and later.

at Months 25, 31, and 37)

21–24 doses over 2 years

9 additional doses

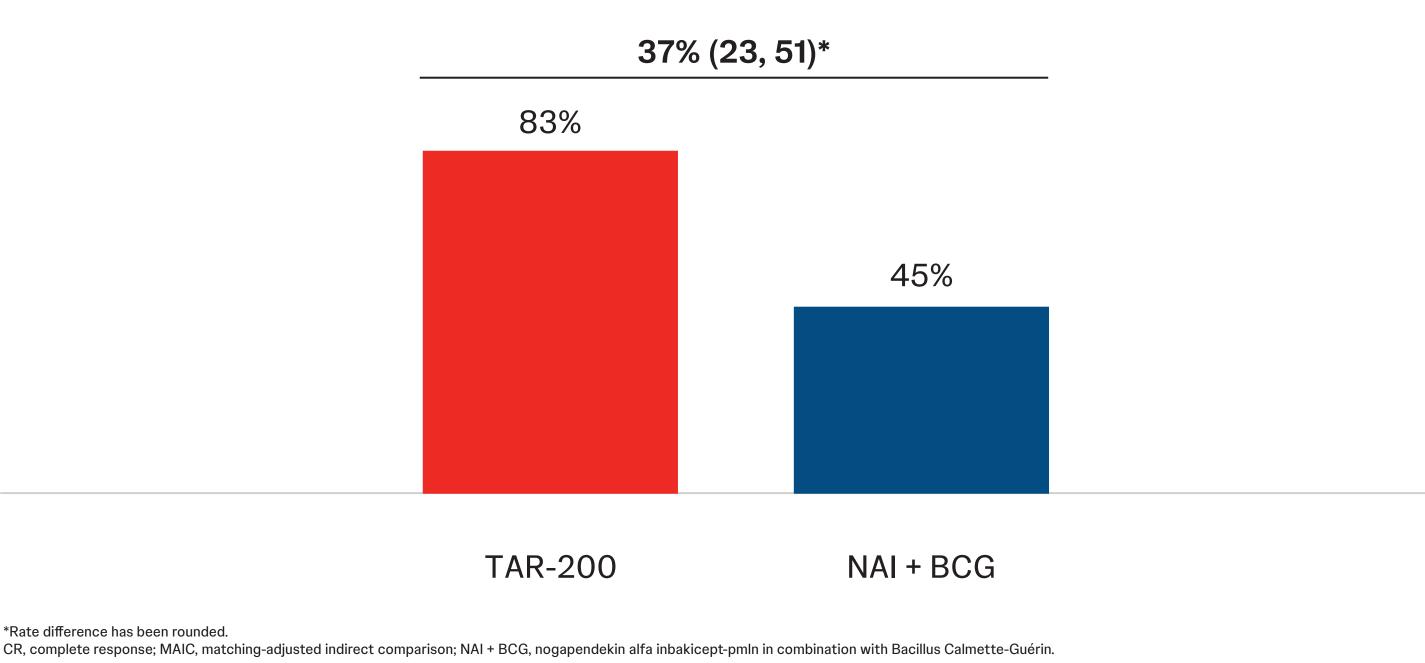
(optional Year 3)


if CR is not achieved at Month 3

Induction: QW for 6

Methods

- A systematic literature review identified published data on the comparator regimens in the BCG-unresponsive HR NMIBC with CIS setting
- The feasibility of conducting MAICs was assessed by reviewing the study and patient characteristics, patient eligibility criteria, outcome definitions, and timepoints of SunRISe-1 and trials of FDA-approved novel agents — KEYNOTE-057,^{2,3} CS-003,^{4,5} and QUILT 3.032^{6,7} — to determine heterogeneity
- Three unanchored MAICs were conducted using individual patient data (IPD) from SunRISe-1 Cohort 2 and summarylevel data from the US prescribing information (USPI) and primary journal publications of the comparators
- Imbalances in patient characteristics (tumor stage, prior doses of BCG instillation, Eastern Cooperative Oncology Group, age, gender and race) were adjusted by weighting the TAR-200 IPD to match the reported baseline characteristics of the comparator trials
- Comparative efficacy was estimated for CR rate at any time and at first disease assessment. Relative effects were quantified using rate differences with 95% confidence intervals derived from weighted logistic regression analysis
- After adjustment, the three MAICs showed that TAR-200 provides significantly higher CR rate at any time vs. all three FDA-approved novel agents (P<0.05 for all comparisons) in the BCG-unresponsive HR NMIBC with CIS setting (Figure 1)
- The greatest incremental difference was observed in the TAR-200 vs. pembrolizumab comparison (+48%)


Figure 1: MAICs of TAR-200 vs. FDA-approved novel agents: adjusted CR at any time (absolute rate differences) *P*<0.05 for all comparisons

CR, complete response: MAICs, matching-adjusted indirect comparisons; nadofaragene, nadofaragene firadenovec-vncg; NAI + BCG, nogapendekin alfa inbakicept-pmIn in combination with Bacillus Calmette-Guérin.

- Given that reinduction was allowed in QUILT 3.032, an analysis comparing CR rate at first disease assessment of TAR-200 vs. NAI + BCG was conducted to assess the impact of reinduction on CR rate (Figure 2)
 - Results from this analysis showed that treatment with TAR-200 led to a significantly higher CR rate at first disease assessment compared with NAI + BCG (P<0.05) based on calculated data that excluded patients who received a second induction
 - Calculation for CR at first disease assessment for NAI + BCG:
 - In the USPI, the efficacy results from QUILT 3.032 (n=77) state that 62% achieved CR at any time (n=48 responders). The USPI also states that 31% (n=24) of patients received a second induction course
 - Chamie et al. 2023⁷ also states that 24 patients received reinduction in Cohort A
 - We can deduce that the 24 reinduced patients are the same across both data sets. Chamie et al. 20237 states that of the 24 reinduced patients, 13 achieved CR after reinduction
 - Triangulating between the sources, we can then calculate from the USPI that 48 total responders – 13 responders after reinduction/77 total patients = 45% of patients achieved CR at first disease assessment

Figure 2: MAIC of TAR-200 vs. NAI + BCG: adjusted CR at first disease assessment (absolute rate difference) P<0.05

CR, complete response; MAIC, matching-adjusted indirect comparison; NAI + BCG, nogapendekin alfa inbakicept-pmln in combination with Bacillus Calmette-Guérin.

Limitations

- The MAIC methodology can only adjust for observed and reported baseline characteristics. Any confounders not
- Some differences in study design and outcomes can introduce biases that the MAIC cannot fully address

consistently reported or missing across studies may impact internal validity

1. Jacob J. Presented at American Urology Association Annual Meeting; April 26, 2025; Las Vegas, NV, USA. 2. Keytruda. Prescribing information. Merck & Co., Inc; 2014. 3. Balar AV, et al. Lancet Oncol. Jul 2021;22(7):919–930. 4. Adstiladrin. Prescribing information. Ferring Pharmaceuticals; 2022. 5. Boorjian SA, et al. Lancet Oncol. 2021;22(1):107–117. 6. Anktiva. Prescribing information. ImmunityBio Inc.; 2024. 7. Chamie K, et al. NEJM Evidence. 2023;2(1). **Urothelial Cancer**

