Dynamic Frailty Analysis of Transplant-Ineligible Patients With NDMM in the Phase 3 MAIA and CEPHEUS Trials of Daratumumab + Lenalidomide-Dexamethasone and Bortezomib-Rd

Hira Mian¹, Thierry Facon², Gordon Cook³, Philippe Moreau⁴, Saad Z Usmani⁵, Shaji K Kumar⁶, Salomon Manier⁷, Vania Hungria⁸, Nizar J Bahlis⁹, Huiling Pei¹⁰, Melissa Rowe¹¹, Robin L Carson¹², Fredrik Borgsten¹³, Sonja Zweegman¹⁴

¹McMaster University, Hamilton, Canada; ²University of Lille, CHU Lille, Service des Maladies du Sang, Lille, France; ³Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK; ⁴Hematology Department, University Hospital Hôtel-Dieu, Nantes, France; ⁵Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁶Department of Hematology, Mayo Clinic Rochester, Rochester, MN, USA; ⁷CHU Lille, Lille, France; ⁸Clínica Médica São Germano, São Paulo, Brazil; ⁹Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, Canada; ¹⁰Johnson & Johnson, Titusville (Hopewell Township); ¹¹Johnson & Johnson, High Wycombe, UK; ¹²Johnson & Johnson, Spring House, PA, USA; ¹³Johnson & Johnson, Raritan, NJ, USA; ¹⁴Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands

https://www.congresshub.com/Oncology/IM <u>S2025/Daratumumab/Miar</u>

I he QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

Disclosures

COI statement of the presenting author

- Research funding: AbbVie, Janssen, Pfizer
- Honoraria: Amgen, BMS, Sanofi, Takeda
- Membership on an entity's Board of Directors or advisory committees: AbbVie, Amgen, BMS, Janssen, Pfizer, Sanofi

Dynamic Frailty Analysis of TIE Patients With NDMM in the Phase 3 MAIA and CEPHEUS Trials: Introduction

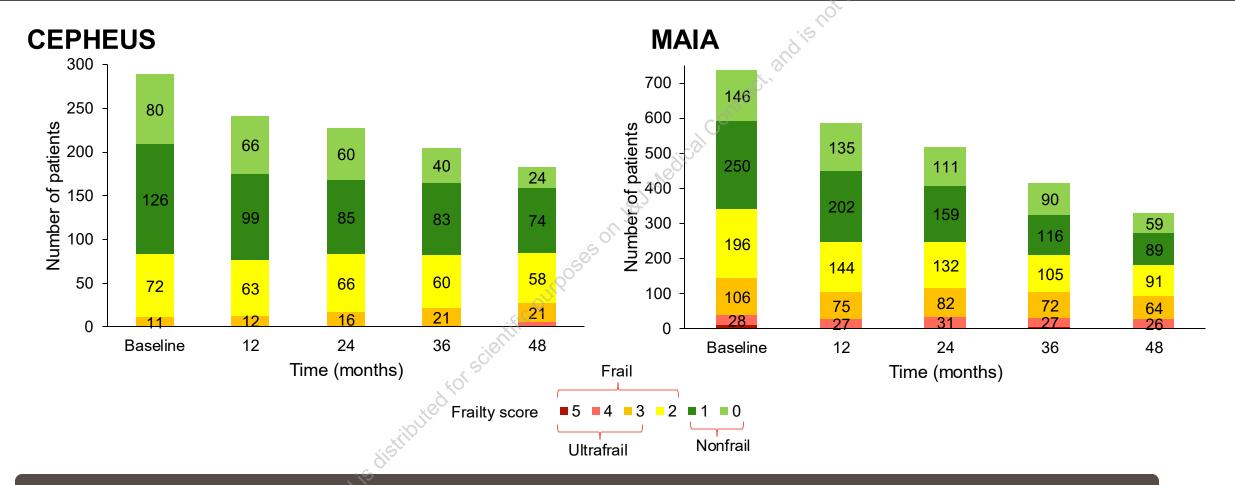
Frailty is a well-recognized, high-risk feature and predictor of survival outcomes in patients with MM¹

• The phase 3 CEPHEUS^{2,3} and MAIA^{4,5} trials showed addition of daratumumab to VRd or Rd improved outcomes including PFS in non-transplanted patients with NDMM, regardless of baseline frailty

Recent studies suggest that frailty is not a static, but a dynamic state

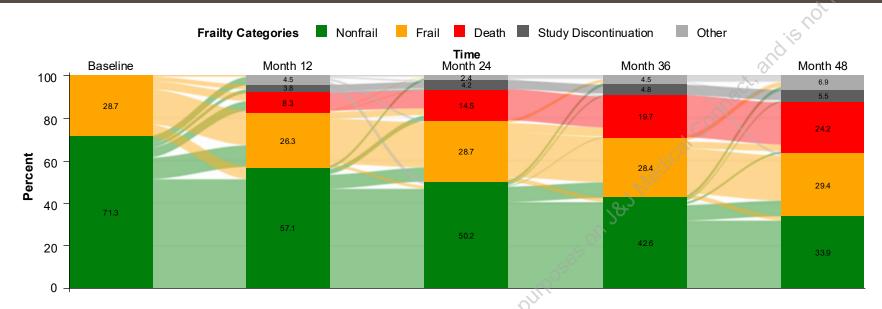
- Dynamic frailty may be a better predictor of outcomes than a static, one-time frailty measurement^{6,7}
- Data on dynamic frailty in phase 2–3 trials are limited (HOVON 123,8 HOVON 143,9,10 IFM 2017-03,11 DynaFiT,12 and FiTNEss13), with daratumumab included in three of them
- Understanding both improvements and deteriorations in frailty over a patient's treatment trajectory may have important considerations in treatment delivery

This post hoc subgroup analysis was performed to analyze efficacy and safety outcomes in TIE patients in the phase 3 CEPHEUS and MAIA trials, based on dynamic frailty status


Post Hoc Dynamic Frailty Analysis of CEPHEUS and MAIA TIE Patients: Methods

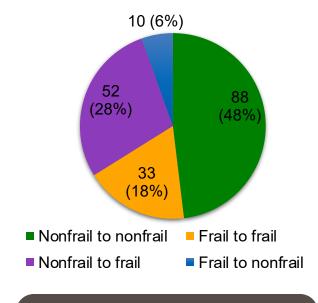
- Patients were randomized 1:1 to receive DVRd:VRd (CEPHEUS)¹ or DRd:Rd (MAIA)²
- Only TIE patients from CEPHEUS were included in this analysis
- Frailty was retrospectively assessed at baseline and 12, 24, 36, and 48 months
 - IFM simplified frailty score was used:
 - Based on CCI at baseline, present age, and ECOG performance status
 - Nonfrail = score 0/1; frail = score ≥2; ultrafrail = score ≥3
- PFS and overall MRD negativity (MRD-neg 10⁻⁵ with ≥CR) rates and safety were assessed across dynamic frailty subgroups

CCI, Charlson comorbidity index; CR, complete response; DRd, daratumumab, lenalidomide, and dexamethasone; DVRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; ECOG, Eastern Cooperative Oncology Group; IFM, Intergroupe Francophone du Myélome; MRD, minimal residual disease; PFS, progression-free survival; Rd, lenalidomide and dexamethasone; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone


CEPHEUS & MAIA: Distribution of Frailty Scores From Baseline to 48 Months Across Both Treatment Arms

Frailty scores were generally higher in MAIA, including a higher percentage of ultrafrail patients

CEPHEUS: Change in Frailty Levels Yearly, Across Both Treatment Arms



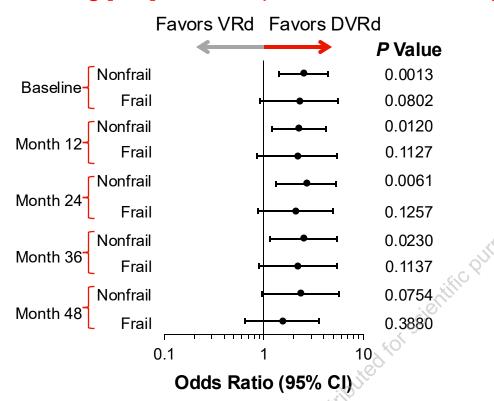
Reasons for deterioration from baseline in 206 patients who were nonfrail at BL, %

Increase in both age and ECOG PS	1.5	3.4	7.3	9.7
Increase in age	2.4	6.8	9.2	11.7
Increase in ECOG PS	10.2	9.7	4.9	3.9

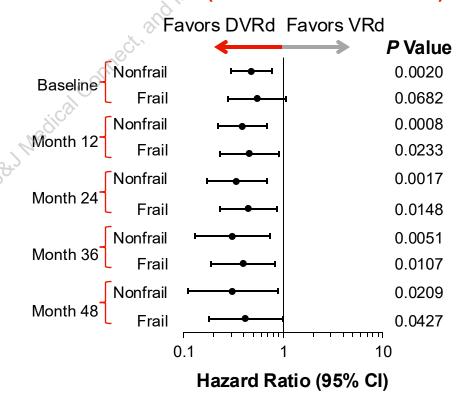
Deterioration of frailty level was due to increases in ECOG and/or age

Shift summary from baseline to 48 months, n (%)

Frailty changed in 34% of patients with data at 48 months



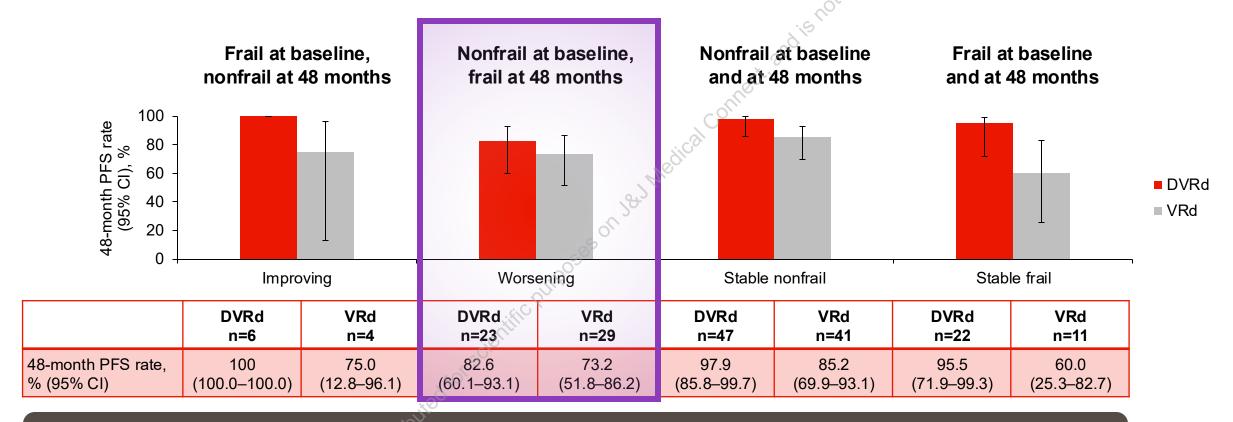
Frailty Status per Simplified IFM Criteria in Year 1 and Beyond for Transplant Ineligible Patients; Intent-to-Treat Analysis Set. 'Other' includes those for whom data for frailty score calculation were not available within the correct time window.


BL, baseline; ECOG PS, Eastern Cooperative Oncology Group performance status; IFM, Intergroupe Francophone du Myélome.

CEPHEUS: MRD[10⁻⁵]-negativity ≥CR Rates and PFS Across Frailty Groups Across Timepoints.

MRD-neg [10⁻⁵] with ≥CR (baseline to 48 months)

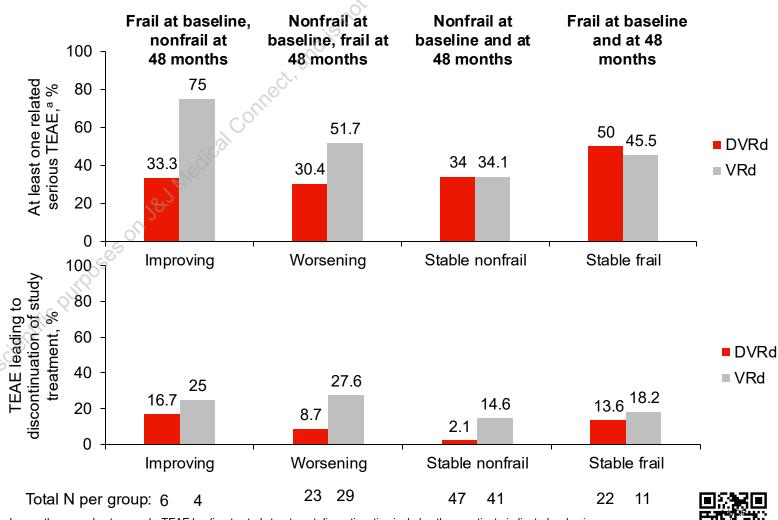
PFS (baseline to 48 months)



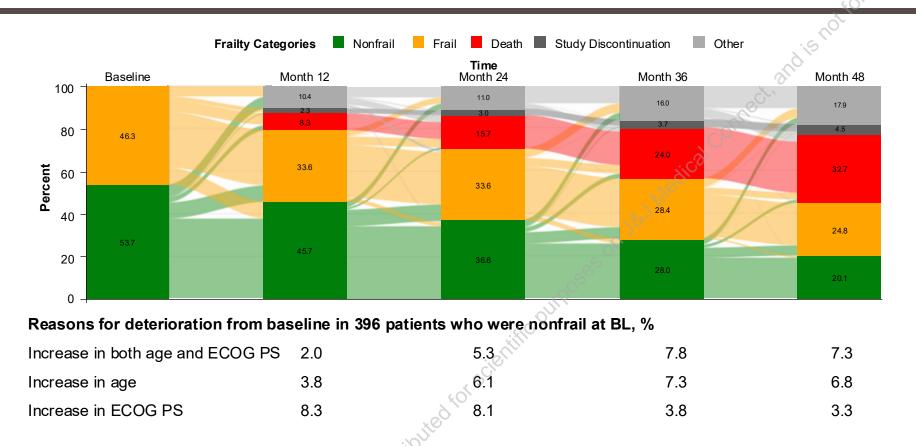
Dara consistently improved MRD-negativity rates across frailty groups and timepoints

PFS was better in the DVRd vs VRd group across frailty groups and timepoints

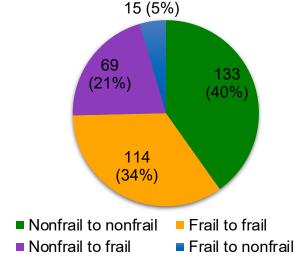
CEPHEUS: Frailty Changes Over 48 Months Influenced PFS


There was a trend towards shorter PFS in those with worsening frailty Inclusion of Dara is associated with longer PFS regardless of frailty changes

CEPHEUS: Safety Summary Based on Frailty Change at 48 Months

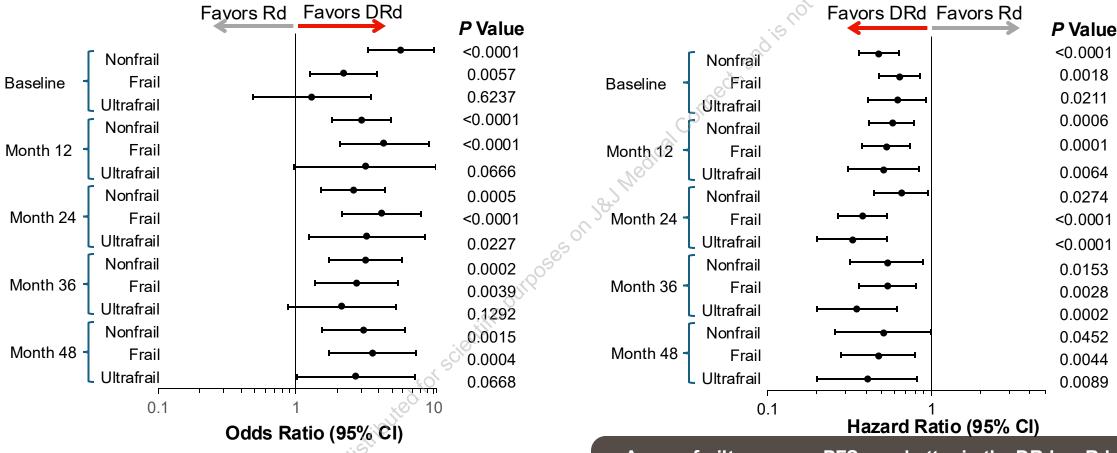

 Incidence of related serious TEAEs was generally similar or lower in patients receiving DVRd vs VRd

- Incidence of TEAEs leading to study treatment discontinuation was generally lower in patients receiving DVRd vs VRd
- Generally, rates of these events were not higher in any of the dynamic frailty subgroups


^aTEAEs related to at least 1 of the 4 components of study treatment: bortezomib, lenalidomide, dexamethasone, daratumumab. TEAE leading to study treatment discontinuation includes those patients indicated as having discontinued treatment due to an adverse event on the end of treatment CRF page.

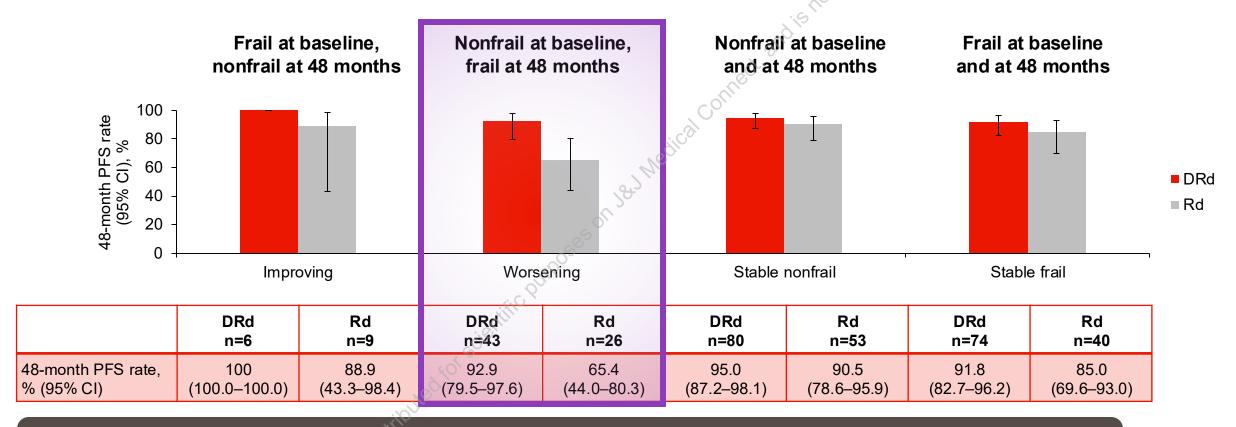
MAIA: Change in Frailty Levels Yearly, Across Both Treatment Arms

Deterioration of frailty level was due to increases in ECOG and/or age


Shift summary from baseline to 48 months, n (%)

Frailty changed in 26% of patients with data at 48 months

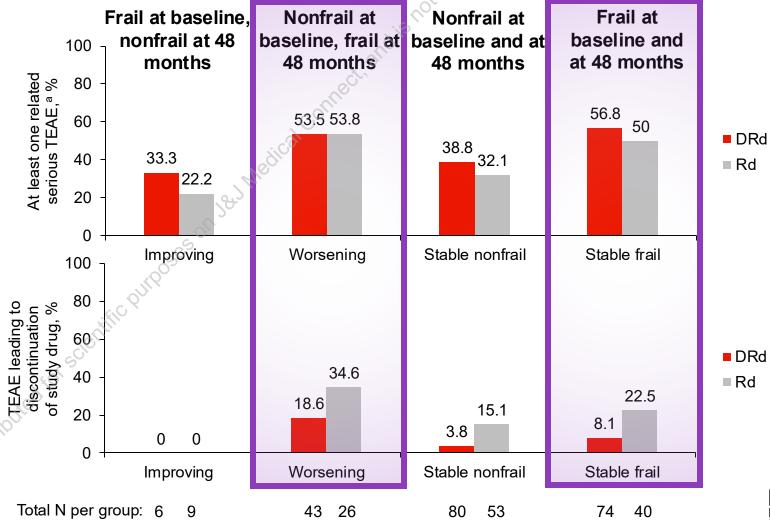
MAIA: MRD [10⁻⁵]-negativity ≥CR Rates and PFS Across Frailty Groups, Including Ultrafrail, Across Timepoints



Dara consistently improved MRD-negativity rates across frailty groups and timepoints

Across frailty groups, PFS was better in the DRd vs Rd group across timepoints; Dara provided further PFS benefit in ultrafrail patients across timepoints

MAIA: Frailty Changes Over 48 Months Influenced PFS


There was a trend towards shorter PFS in those with worsening frailty Inclusion of Dara is associated with longer PFS regardless of frailty changes

MAIA: Safety Summary Based on Frailty Change at 48 Months

 Incidence of related serious TEAEs was generally similar in patients receiving DRd vs Rd

- Incidence of TEAEs leading to study treatment discontinuation was generally lower in patients receiving DRd vs Rd
- Generally, rates of these events were higher in those with stable frail or worsening frailty

Dynamic Frailty Analysis of TIE Patients With NDMM in the Phase 3 MAIA and CEPHEUS Trials: Conclusions

- Frailty in some TIE patients with NDMM changed over time in CEPHEUS and MAIA
 - Most patients had stable frailty, some deteriorated, and a small number improved over 48 months
 - Deterioration of frailty level was due to increases in both ECOG PS and age
- There was a trend towards shorter PFS in those with worsening frailty
 - Inclusion of daratumumab is associated with longer PFS regardless of frailty changes
 - Daratumumab consistently improved MRD-negativity rates across frailty groups and timepoints
- Incidence of related serious TEAEs and TEAEs leading to study treatment discontinuation was generally similar or lower in patients receiving daratumumab vs those not, regardless of changing frailty
- Additional data from phase 3 trials investigating the value of treatment adaptation based on dynamic frailty assessments are warranted

Overall, daratumumab provided a clinical benefit, irrespective of changing frailty status over time

CEPHEUS and MAIA: Acknowledgments

- Patients who participated in these studies and their families
- Staff members at the study sites
- Data and safety monitoring committees
- Johnson & Johnson
- Mai Ngo and George Wang of Johnson & Johnson for statistical support
- Medical writing support was provided by Christine Ingleby, DPhil, of Eloquent, part of Envision Spark, an Envision Medical Communications agency, a part of Envision Pharma Group, and funded by Johnson & Johnson
- These studies and this analysis was sponsored by Johnson & Johnson

https://www.congresshub.com/Oncology/l MS2025/Daratumumab/Mian

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

