Phase 2 Study of Talquetamab + Teclistamab in Patients With Relapsed/Refractory Multiple Myeloma and Extramedullary Disease: RedirecTT-1

Shaji Kumar¹, María-Victoria Mateos², Jing Christine Ye³, Shebli Atrash⁴, Hila Magen⁵, Hang Quach⁶, Michael P Chu⁷, Suzanne Trudel⁸, Joshua Richter⁹, Paula Rodríguez-Otero¹⁰, Hun Chuah¹¹, Moshe Gatt¹², Eva Medvedova¹³, Shahzad Raza¹⁴, Dok Hyun Yoon¹⁵, Tadao Ishida¹⁶, Jeffrey V Matous¹⁷, Laura Rosiñol¹⁸, Koichi Onodera¹⁹, Surabhi Bajpai²⁰, Vikram Kurra²⁰, Emma Scott²¹, Christoph Heuck²¹, Jenny Zhang²¹, Todd Henninger²², Lisa O'Rourke²¹, Payal Thakkar²², Mariacristina Festa²³, Lin Huang²¹, Jiashen Lu²⁴, Nicholas Au²¹, Maria Krevvata²¹, Ashwini Kumar²¹, Saad Z Usmani²⁵, Yaël C Cohen²⁶

¹Mayo Clinic Rochester, Rochester, MN, USA; ²University Hospital of Salamanca/IBSAL/CIC/CIBERONC, Salamanca, Spain; ³MD Anderson Cancer Center, University of Texas, Houston, TX, USA; ⁴Levine Cancer Institute-Atrium Health, Charlotte, NC, USA; ⁵Chaim Sheba Medical Center, Ramat-Gan, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; ⁶University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia; ⁷Alberta Health Services, Edmonton, AB, Canada; ⁸Princess Margaret Cancer Centre, Toronto, ON, Canada; ⁹Mount Sinai Medical Center, New York, NY, USA; ¹⁰Cancer Center Clinica Universidad de Navarra, Cima, Pamplona, Spain; ¹¹Royal Perth Hospital, Perth, WA, Australia; ¹²Hadassah Medical Cener, Hebrew University of Jerusalem, Jerusalem, Israel; ¹³Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA; ¹⁴Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA; ¹⁵Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ¹⁶Japanese Red Cross Medical Center, Tokyo, Japan; ¹⁷Colorado Blood Cancer Institute and Sarah Cannon Research Institute, Denver, CO, USA; ¹⁸Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain; ¹⁹Tohoku University Hospital, Sendai shi, Miyagi, Japan; ²⁰Perceptive Imaging, Boston, MA, USA; ²¹Johnson & Johnson, Sening House, PA, USA; ²²Johnson & Johnson, Shanghai, China; ²⁵Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²⁶Tel Aviv Sourasky (Ichilov) Medical Center, Faculty of Medical and Health Sciences, Tel Aviv, University, Tel Aviv, Israel

Presented by S Kumar at the European Hematology Association (EHA) 2025 Hybrid Congress; June 12–15, 2025; Milan, Italy

https://www.congresshub.com/EHA2025/Oncology/ Talquetamab/Kumar-Phase-2

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way

Extramedullary Disease (EMD) is Associated With Poor Survival in Myeloma

BONE DEPENDENT

Paramedullary disease^{1,2} Plasmacytomas growing contiguously with bone and extending into soft tissue after cortical disruption

BONE INDEPENDENT

True EMD^{1,2} Soft tissue/organ-associated plasmacytomas noncontiguous with bony structures

Inferior outcomes vs patients with paramedullary plasmacytomas and patients with MM without EMD³⁻¹³ Patients with EMD are 87% less likely to respond to treatment vs patients without EMD Poster PF768

Worse outcomes for patients with true EMD with real-world standard-of-care myeloma treatments¹³

Heavily pretreated, triple-class exposed RRMM			
	With EMD	Without EMD	
ORR, %	24.1	33.3	
mPFS, months	2.7	5.1	
mOS, months	7.2	15.5	

1. Ho M, et al. *Curr Oncol* 2025;32:182. 2. Bladé J, et al. *Blood Cancer J* 2022;12:45. 3. Rosiñol L, et al. *Br J Haematol* 2021;194:496-507. 4. Pour L, et al. *Haematologica* 2014;99:360-4. 5. Mangiacavalli S, et al. *Ann Hematol* 2017;96:73–80. 6. Rasche L, et al. *Ann Hematol* 2012;91:1031-7. 7. Richard S, et al. *Blood* 2022;140(Suppl 1):4301-2; 8. Pan D, et al. *Blood* 2023;142(Suppl 1):1006. 9. Dima D, et al. *Blood Cancer J* 2024;14:90. 10. Zanwar S, et al. *J Hematol Oncol* 2024;17:42. 11. Usmani SZ, et al. *Haematologica* 2012;97:1761-7. 12. Beksac M, et al. *Haematologica* 2020;105:201-8. 13. Moreau P, et al. *Clin Lymphoma Myeloma Leuk* 2025:S2152-2650(25)00106-5. mOS, median overall survival; mPFS, median progression-free survival; ORR, overall response rate; RRMM, relapsed/refractory multiple myeloma.

RedirecTT-1: Dual-Targeting of GPRC5D and BCMA in Patients With True EMD

RedirecTT-1 phase 1 results showed promising activity EMD lesions are highly complex, with active T-cell of the Tal + Tec RP2R in patients with true EMD^{8,9} infiltration and heterogenous expression of GPRC5D and BCMA¹ 100 sCR Tal (anti-GPRC5D) and Tec (anti-BCMA) are first-in-class CR VGPR BsAbs approved as monotherapies for triple-class 80 PR 61.1% exposed RRMM²⁻⁶ (35.7 - 82.7)**DRR (95% CI)**^a 60 In patients with EMD, ORR was 43.5% with Tal 12-month PFS rate: 11.1 52.9% monotherapy and 43.4% with Tec monotherapy in (95% CI: 27.6–73.0) ≥CR: MonumenTAL-1 and MajesTEC-1, respectively⁷ 40 33.3% 22.2 Preliminary data from phase 1 suggest that dual 20 targeting of GPRC5D and BCMA led to higher ORR and 27.8 greater depth and durability of response likely by mitigating antigen-related escape 0 Tal + Tec (N=18)

ClinicalTrials.gov identifier: NCT04586426.

1. John M, et al. *Blood* 2024;144:2121-35. 2. Chari A, et al. *Lancet Hematol* 2025;e269-81. 3. Chari A, et al. *N Engl J Med* 2022;387:2232-42. 4. TALVEY (talquetamab-tgvs). Prescribing information. Horsham, PA: Janssen Biotech, Inc.; 2023. 5. Moreau P, et al. *N Engl J Med* 2022;387:495-505. 6. TECVAYLI (teclistamab-cqyv). Prescribing information. Horsham, PA: Janssen Biotech, Inc; 2024. 7. Data on file. 8. Cohen Y, et al. *N Engl J Med* 2025;9;392:138-49. 9. Cohen YC, et al. Presented at IMS; September 25–28, 2024; Rio de Janeiro, Brazil.

^aORR was investigator-assessed; due to rounding, individual response rates may not sum to the ORR. BCMA, B-cell maturation antigen; BsAb, bispecific antibody; CR, complete response; GPRC5D, G protein–coupled receptor family C group 5 member D; PR, partial response; PFS, progression-free survival; RP2R, recommended phase 2 regimen; sCR, stringent complete response; Tal, talquetamab; Tec, teclistamab; VGPR, very good partial response.

RedirecTT-1 Phase 2 Tal + Tec: Largest Dedicated Phase 2 Study in Patients With True EMD

Option to reduce dosing frequency for both agents to monthly dosing after:

- ≥VGPR and minimum 4 cycles of therapy, or
- 6 cycles, per investigator discretion

^aPatients may have had paraskeletal plasmacytomas in addition to true EMD. ^bWhole body MRI permitted with sponsor approval. ^cPrior PI, IMiD, and anti-CD38 monoclonal antibody. ^dTal and Tec administered on the same day, 30 (±10) minutes apart, for all step-up and full treatment doses. ^eResponse was assessed by independent review committee per IMWG criteria. CAR, chimeric antigen receptor; DOR, duration of response; IMiD, immunomodulatory drug; IMWG, International Myeloma Working Group; MRI, magnetic resonance imaging; PET-CT, positron emission tomography/computed tomography; PI, proteasome inhibitor; PK, pharmacokinetics; Q2W, every other week; SC, subcutaneous.

RedirecTT-1 Phase 2 Tal + Tec: Most Patients With True EMD Were Triple-Class Refractory

Characteristic	Tal + Tec (N=90)	Characteris
Median age, years (range)	64.5 (42–84)	ECOG perfo
Male, n (%)	57 (63.3)	0
Race, n (%)		1
White	64 (71.1)	2
Black/African American	8 (8.9)	Years since
Asian	13 (14.4)	Median prior
Not reported	5 (5.6)	Exposure sta
True extramedullary plasmacytomas ≥1,ª n (%)	90 (100) ^b	Anti-BCMA
Number of extramedullary plasmacytomas, ^a median (range)	2 (1–7)	BsAb there
Number of extramedullary plasmacytomas, ^a n (%)	OUL	Triple-clas
1	38 (42.2)	Penta-drug
2–3	29 (32.2)	Refractory st
≥4	23 (25.6)	PI
High-risk cytogenetics, ^c n (%)	14 (21.5)	IMiD
Measurable disease, ^d n (%)		Anti-CD38
Nonsecretory	4 (4,4)	I ripie-class
Oligosecretory	31 (34.4)	To last LO

Characteristic	Tal + Tec (N=90)
ECOG performance status, n (%)	
0	32 (35.6)
1 only	50 (55.6)
2	8 (8.9)
Years since diagnosis, median (range) ^e	4.7 (0.7–21.4)
Median prior LOT, n (range)	4.0 (1–10)
Exposure status, n (%)	
Belantamab mafodotin	11 (12.2)
Anti-BCMA CAR-T therapy	18 (20.0)
BsAb therapy ^f	8 (8.9)
Triple-class	90 (100)
Penta-drug	51 (56.7)
Refractory status, n (%)	
PI	86 (95.6)
IMiD	84 (93.3)
Anti-CD38 monoclonal antibody	85 (94.4)
Triple-class	76 (84.4)
Penta-drug	32 (35.6)
To last LOT	75 (83.3)

Data cut-off date: March 18, 2025.

^a>1 nonradiated bone-independent soft tissue plasmacytoma (>2 cm in greatest dimension) confirmed by PET-CT scans. 6 patients had data on the number of EMD lesions based on investigator assessment only. ^bParaskeletal lesions were also present in 19 patients. ^cFISH or karyotype testing in n=65; defined as del(17p), t(4;14), or t(14;16). ^dPer IMWG criteria. ^eCalculated in n=89. ^fAll patients received anti-FcRH5 BsAbs. ECOG, Eastern Cooperative Oncology Group; FcRH5, Fc receptor-homolog 5; FISH, fluorescence in situ hybridization; ISS, International Staging System; LOT, line of therapy.

RedirecTT-1 Phase 2 Tal + Tec: High Response Rates in Patients With True EMD With Unmet Need

High ORR (78.9%) and deep responses (≥CR: 54.4%) in patients with EMD

Data cut-off date: March 18, 2025.

^aORR was assessed by independent review committee per IMWG criteria; due to rounding, individual response rates may not sum to the ORR.

RedirecTT-1 Phase 2 Tal + Tec: Dual-Antigen Targeting in Patients With True EMD Led to Higher ORR and ≥CR Rate

RedirecTT-1 Phase 2 Tal + Tec: Responses Deepened or Maintained in Most Patients With True EMD

RedirecTT-1 Phase 2 Tal + Tec: Promising mPFS in Patients With True EMD After 13 Months of Follow-up

Estimated PFS rate at 1 year was 61%

Data cut-off date: March 18, 2025. Median follow-up: 12.6 months.

Medians and rates shown with 95% CIs. and content and the content of the content

RedirecTT-1 Phase 2 Tal + Tec: Durable Responses and Prolonged Survival in Patients With True EMD

RedirecTT-1 Phase 2 Tal + Tec: CRS and ICANS Mostly Low Grade

CRS	Tal + Tec (N=90)	ICANS	Tal + Tec (N=90)
Patients with CRS, ^a n (%) Grade 1 Grade 2 Grade 3	70 (77.8) 53 (58.9) 17 (18.9) 0 (0)	Patients with ICANS, ^a n (%) Grade 1 Grade 2 Grade 3 Grade 4	11 (12.2) 5 (5.6) 4 (4.4) 1 (1.1) 1 (1.1)
Occurrence of CRS, ^b n (%) Step-up dose 1 Step-up dose 2 Step-up dose 3 Cycle 1 Cycle 2 onwards	40 (44.4) 51 (56.7) 24 (26.7) 5 (5.6) 1 (1.1)	Occurrence of ICANS, ^b n (%) Step-up dose 1 Step-up dose 2 Step-up dose 3 Cycle 1 Cycle 2 onwards	2 (2.2) 4 (4.4) 7 (7.8) 2 (2.2) 0
Days to onset, ^c median (range)	2 (1–29)	Days to onset, ^c median (range)	3 (1–7)
Duration, days, median (range)	2 (1–8)	Duration, days, median (range)	2 (1–7)

 CRS^d was managed with tocilizumab (56.7%), acetaminophen (56.7%), corticosteroids (18.9%), and IV fluids (17.8%)

 ICANS^d was managed with corticosteroids (10.0%), levetiracetam (4.4%), anakinra (2.2%), and tocilizumab (1.1%)

CRS and ICANS consistent with Tal and Tec monotherapy

Data cut-off date: March 18, 2025. Median follow-up: 12.6 months.

^aCRS and ICANS were graded per ASTCT criteria. ^bPatients could experience ≥1 CRS event. ^cRelative to the most recent dose. ^dPatients could receive ≥1 supportive therapy. ASTCT, American Society for Transplantation and Cellular Therapy; CRS, cytokine release syndrome; ICANS, immune effector cell–associated neurotoxicity syndrome; IV, intravenous.

RedirecTT-1 Phase 2 Tal + Tec: Safety Consistent With Known Profiles of Tal and Tec

Hematologic AEs (≥30%),ª n (%)	Tal + Tec (N=90)		
	Any Grade	Grade 3/4	
Neutropenia	65 (72.2)	56 (62.2)	
Anemia	46 (51.1)	28 (31.1)	
Thrombocytopenia	34 (37.8)	23 (25.6)	
Nonhematologic AEs (≥30%),ª n (%)			
Taste changes⁵	71 (78.9)	NA 😜	
CRS	70 (77.8)	0 (0)	
Non-rash skin AEs ^c	62 (68.9)	کې (0) 0	
Nail-related AEs ^d	50 (55.6)	0 (0)	
Weight decrease	48 (53.3)	10 (11.1)	
Dry mouth	40 (44.4)	0 (0)	
Cough	33 (36.7)	ون 0 (0)	
Diarrhea	30 (33.3)	3 (3.3)	
Pyrexia ^e	28 (31.1)	1 (1.1)	
Hypokalemia	27 (30.0)	7 (7.8)	
Fatigue	27 (30.0)	3 (3.3)	
Nausea ^e	27 (30.0)	0 (0)	

- Low rates of discontinuations due to AEs (n=5)^f
 - Tal + Tec (n=3; all nonfatal): pseudomonal pneumonia and pseudomonal sepsis (n=1), dry mouth, dysphagia, decreased weight (n=1), and ICANS (n=1)
 - Tal only (n=2; all nonfatal): dysgeusia and dysphagia (n=1), and hypohidrosis (n=1)
- 10 (11.1%) grade 5 AEs, including 5 infections^f
 - Noninfectious
 - Related: aspiration (n=1)
 - Unrelated: respiratory failure, euthanasia, general physical health deterioration, and cerebellar hemorrhage (each n=1)

Data cut-off date: March 18, 2025. Median follow-up: 12.6 months.

^aAEs graded by CTCAE v5.0; CRS per ASTCT criteria. ^bIncludes dysgeusia, ageusia, hypogeusia, and taste disorder; maximum grade for taste changes is 2 per CTCAE. ^cIncludes skin exfoliation, dry skin, pruritus, and palmar-plantar erythrodysesthesia syndrome. ^dIncludes nail discoloration, nail disorder, onycholysis, onychomadesis, nail dystrophy, nail toxicity, and nail ridging. ^eExcludes symptoms of CRS or ICANS. ^fData presented on a treatment-emergent basis. CTCAE, Common Terminology Criteria for Adverse Events; NA, not applicable.

RedirecTT-1 Phase 2 Tal + Tec: Rates of Infection

Most common AEs	Tal + Tec (N=90)		
(≤10% Overall),º fi (%)	Any Grade	Grade 3/4 ^b	
Infections	71 (78.9)	28 (31.1)	
Upper respiratory tract infection	22 (24.4)	3 (3.3)	
COVID-19	20 (22.2)	5 (5.6)	
Pneumonia	16 (17.8)	4 (4,4)	
Urinary tract infection	12 (13.3)	3 (3.3)	
Viral upper respiratory tract infection	9 (10.0)	2 (2.2)	

- Grade 3/4 infections mostly limited to early cycles
- Grade 5 infections (5.6%): COVID-19 pneumonia, Klebsiella sepsis, pneumonia, Klebsiella pneumonia, pseudomonal sepsis (each n=1)
- 96.7% received antiviral prophylaxis
- 70.0% had posttreatment hypogammaglobulinemia^c
- 86.7% received ≥1 dose of IVIG

Rates of severe infections were similar to monotherapy, underscoring the importance of vigilant infection prophylaxis and management

Data cut-off date: March 18, 2025. Median follow-up: 12.6 months. ^aAEs were graded by CTCAE v5.0. ^bMaximum toxicity. ^cPosttreatment IgG <400 mg/dL or hypogammaglobulinemia treatment-emergent AE. Ig, immunoglobulin; IVIG, intravenous immunoglobulin.

RedirecTT-1 Phase 2 Tal + Tec: Transformative Efficacy in Largest Dedicated EMD Study to Date

- Deep and durable responses in true EMD myeloma with an off-the-shelf, dual-targeting regimen, showcasing enhanced efficacy in a difficult-to-treat disease
 - ORR of 78.9% (≥CR, 54.4%)
 - 12-month PFS rate of 61.0%
 - 12-month OS rate of 74.5%
- Combination of Tal + Tec demonstrated efficacy exceeding that of standard therapies and novel T-cell redirecting therapies¹⁻⁵
- AEs were not exacerbated with combination vs Tal or Tec monotherapy in the setting of EMD
 - Q2W to monthly dosing schedules may contribute to improved tolerability vs phase 1
 - Infection profile supports vigilant infection monitoring and management

Results from phase 2 of RedirecTT-1 showed deep and durable responses in a population with significant unmet need, highlighting the clinical benefit of dual-antigen targeting with Tal + Tec

1. Dima D, et al. Blood Cancer J 2024;14:90. 2. Zanwar S, et al. J Hematol Oncol 2024;17:42. 3. Martin T, et al. J Clin Oncol 2023;41:1265-74. 4. Zhao WH, et al. J Hematol Oncol 2022;15:86. 5. Moreau P, et al. Clin Lymphoma Myeloma Leuk 2025:S2152-2650(25)00106-5.

Acknowledgments

- We thank the patients who are participating in this study and their caregivers, the physicians and nurses who care for them, the staff at study sites, and the staff involved in data collection and analyses
- We thank all the phase 2 RedirecTT-1 study investigators
- This study was funded by Johnson & Johnson
- Medical writing support was provided by Rachael Smith, PhD, of Eloquent Scientific Solutions and funded by Johnson & Johnson

romotional Us

https://www.congresshub.com/EHA2025/Oncology/ Talquetamab/Kumar-Phase-2

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way