Daratumumab Plus Bortezomib, Lenalidomide, and Dexamethasone (DVRd) in Patients With Newly Diagnosed Multiple Myeloma (NDMM): Subgroup Analysis of Transplant-Ineligible (TIE) Patients in the Phase 3 CEPHEUS Study

Thierry Facon¹, Sonja Zweegman², Vania Hungria³, Nizar J Bahlis⁴, Christopher P Venner^{5,6}, Marc Braunstein⁷, Ludek Pour⁸, Josep Marti⁹, Supratik Basu¹⁰, Yaël C Cohen^{11,12}, Morio Matsumoto¹³, Kenshi Suzuki¹⁴, Cyrille Hulin¹⁵, Sebastian Grosicki¹⁶, Meral Beksac¹⁷, Angelo Maiolino¹⁸, Jianping Wang¹⁹, Melissa Rowe²⁰, Robin L Carson¹⁹, Saad Z Usmani²¹

¹University of Lille, CHU Lille, Service des Maladies du Sang, Lille, France; ²Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands; ³Clínica Médica São Germano, São Paulo, Brazil; ⁴Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, Canada; ⁵Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada; ⁶BC Cancer–Vancouver Centre, University of British Columbia, Vancouver, BC, Canada; ⁷Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA; ⁸University Hospital Brno, Brno, Czech Republic; ⁹Hospital Universitario Mútua de Terrassa, Terrassa, Spain; ¹⁰Royal Wolverhampton NHS Trust and University of Wolverhampton, CRN West Midlands, NIHR, Wolverhampton, UK; ¹¹Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv, Israel; ¹²Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; ¹³National Hospital Organization Shibukawa Medical Center, Gunma, Japan; ¹⁴Japanese Red Cross Medical Center, Tokyo, Japan; ¹⁵Hôpital Haut Lévêque, University Hospital, Pessac, France; ¹⁶School of Public Health, Medical University of Silesia, Katowice, Poland; ¹⁷Istinye University, Ankara Liv Hospital, Ankara, Turkey; ¹⁸Instituto Americas de Ensino, Pesquisa e Inovação, Rio de Janeiro, Brazil; ¹⁹Johnson & Johnson, Spring House, PA, USA; ²⁰Johnson & Johnson, High Wycombe, UK; ²¹Memorial Sloan Kettering Cancer Center, New York, NY, USA

https://www.congresshub.com/Oncology/AM2025/ Daratumumab/Usmani

Copies of this presentation obtained through Quick Response (QR) Codes are for personal use only and may not be reproduced without permission from ASCO[®] or the author of this presentation.

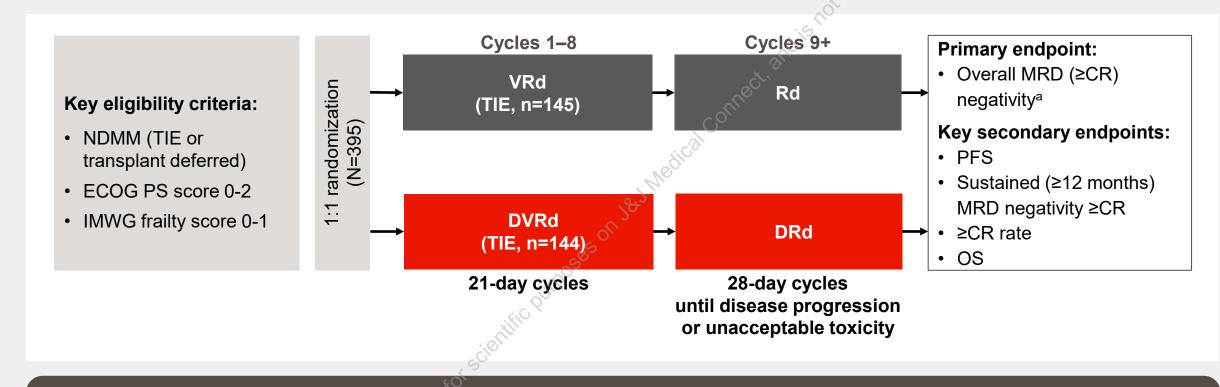
CEPHEUS TIE Subgroup: Key Takeaways

- In the CEPHEUS trial, DVRd vs VRd in patients with TIE NDMM led to:
 - Improved depth and duration of response with higher rates of overall MRD (10⁻⁵) negativity (60.4% vs 39.3%; OR, 2.37; 95% CI, 1.47–3.80) and higher rates of sustained ≥1-year and ≥2-year MRD negativity
 - Improved PFS (HR, 0.51; 95% CI, 0.35–0.74), with higher proportion of patients alive and progression free at 4.5 years (69% vs 48%)
 - Trends toward improved OS (HR, 0.66), especially when censoring for death due to COVID-19 (HR, 0.55)
 - No additional safety concerns compared with the ITT population in this older, frailer TIE subgroup

Results of this post hoc CEPHEUS TIE subgroup analysis reinforce DVRd as standard of care for the treatment of TIE NDMM

DVRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; HR, hazard ratio; ITT, intent to treat; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; OR, odds ratio; OS, overall survival; PFS, progression-free survival; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone.

Introduction


- Daratumumab-containing triplet and quadruplet regimens (eg, DRd, DVRd) have demonstrated improved survival benefit in patients with NDMM¹⁻⁴
 - DVRd is a recommended option for the treatment of TE⁵⁻⁷ and TIE NDMM^{6,7}
 - The phase 3 MAIA trial showed significant and clinically meaningful improvement in PFS and OS with DRd vs Rd for patients with TIE NDMM,³ a population for which DRd remains a recommended treatment⁵⁻⁷
- In the phase 3 CEPHEUS trial, DVRd improved overall MRD-negativity rates and PFS vs VRd in patients with NDMM who were TIE or who deferred transplant⁴
 - A subgroup analysis of CEPHEUS also demonstrated a consistent benefit of DVRd vs VRd regardless of frailty status⁸
- Transplant deferral is not a common clinical pathway for NDMM in many regions, and the majority of patients enrolled in CEPHEUS were TIE (approximately 75%)

This post hoc CEPHEUS subgroup analysis evaluates the efficacy and safety outcomes of DVRd in TIE NDMM

MAIA: NCT02252172; CEPHEUS: NCT03652064. DRd, daratumumab, lenalidomide, and dexamethasone; DVRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; OS, overall survival; PFS, progression-free survival; Rd, lenalidomide and dexamethasone; TE, transplant eligible; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone.
1. Facon T. et al. *N Engl J Med* 2019;380:2104-15. 2. Sonneveld P, et al. *N Engl J Med* 2024;390:301-13. 3. Facon T, et al. *Leukemia* 2025;39:942-50. 4. Usmani, SZ, et al. *Nat Med* 2025;31:1195-1202.
5. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Multiple Myeloma V.2.2025. © National Comprehensive Cancer Network, Inc. 2025. All rights reserved. Accessed May 5, 2025. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way. 6. Rajkumar SV. *Am J Hematol* 2024;99:1802-24. 7. mSMART. Treatment for Multiple Myeloma v22. 8. Zweegman S, et al. Presented at EMN; April 10, 2025; Athens, Greece.

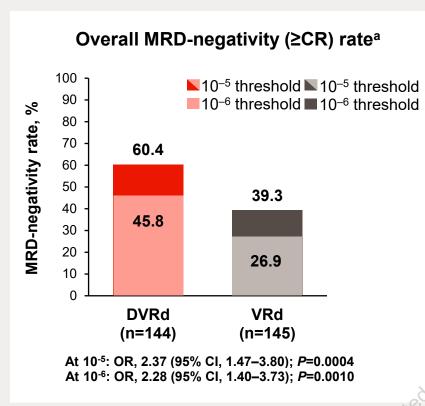
CEPHEUS: Study Design

This post hoc subgroup analysis includes only patients with TIE NDMM (~75% of the ITT population)

^aMRD was assessed via next-generation sequencing (clonoSEQ[®]; Adaptive Biotechnologies) using bone marrow aspirate samples obtained at baseline, at the time of suspected CR, and at 12, 18, 24, 30, and 36 months after the first dose and annually thereafter in patients with CR. CR, complete response; DRd, daratumumab, lenalidomide, and dexamethasone; DVRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; ECOG PS, Eastern Cooperative Oncology Group performance status; IMWG, International Myeloma Working Group; ITT, intent to treat; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; OS, overall survival; PFS, progression-free survival; Rd, lenalidomide and dexamethasone; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone. ClinicalTrials.gov Identifier: NCT03652064. Accessed April 7, 2025. Usmani, SZ, et al. *Nat Med*. 2025;31:1195-1202.

CEPHEUS TIE Subgroup: Baseline Demographic and Clinical Characteristics

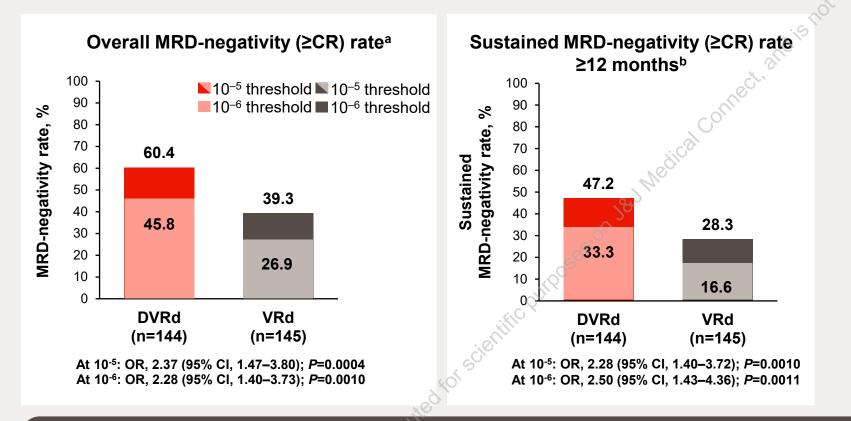
Characteristic	DVRd (n=144)	VRd (n=145)		
Age				
Median (range), years	72.0 (58–79)	72.0 (51–80)		
Age <70 years, n (%)	35 (24.3)	35 (24.1)		
Age 70 to <75 years, n (%)	68 (47.2)	65 (44.8)		
Age ≥75 years, n (%)	41 (28.5)	45 (31.0)		
Male, n (%)	65 (45.1)	82 (56.6)		
ECOG PS score, n (%) ^a				
0	52 (36.1)	57 (39.3)		
1	75 (52.1)	78 (53.8)		
2	17 (11.8)	10 (6.9) 🖋		
IMWG frailty score, n (%) ^b	· · ·	97.		
0 (fit)	82 (56.9)	88 (60.7)		
1 (intermediate fitness)	62 (43.1)	57 (39.3)		
IFM frailty score, n (%)		: Ol		
Nonfrail (0–1)	96 (66.7)	o ^{0°} 110 (75.9)		
Frail (≥2)	48 (33.3) 📀	35 (24.1)		


Characteristic	DVRd (n=144)	VRd (n=145)				
Type of myeloma by immunofixation or serum FLC assay, n (%)						
lgG	92 (63.9)	78 (53.8)				
IgA	26 (18.1)	42 (29.0)				
lgD	2 (1.4)	2 (1.4)				
Light chain	20 (13.9)	19 (13.1)				
Biclonal	4 (2.8)	3 (2.1)				
Unknown	0	1 (0.7)				
Extramedullary plasmacytomas, n (%)	9 (6.3)	12 (8.3)				
ISS staging, n (%) ^c						
I	50 (34.7)	48 (33.1)				
11	54 (37.5)	57 (39.3)				
111	40 (27.8)	40 (27.6)				
Cytogenetic risk, n (%) ^d						
Standard	105 (72.9)	111 (76.6)				
High	20 (13.9)	18 (12.4)				
Unevaluable or missing	19 (13.2)	16 (11.0)				

Baseline characteristics of TIE patients were similar between DVRd and VRd groups

^aECOG PS is scored on a scale from 0 to 5, with 0 indicating no symptoms and higher scores indicating increasing disability. ^bTotal additive frailty is scored on a scale of 0 to 5 based on age, comorbidities, and cognitive and physical conditions, with 0 indicating fit, 1 indicating intermediate fitness, and ≥2 indicating frail, per the Myeloma Geriatric Assessment score (http://www.myelomafrailtyscorecalculator.net/). ^cBased on the combination of serum β₂-microglobulin and albumin levels. Higher stages indicate more advanced disease. ^dBased on fluorescence in situ hybridization; high risk was defined as the presence of del(17p), t(4;14), and/or t(14;16). DVRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; ECOG PS, Eastern Cooperative Oncology Group Performance Status; FLC, free light chain; IFM, Intergroupe Francophone du Myelome; Ig, immunoglobulin; IMWG, International Myeloma Working group; ISS, International Staging System; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone.

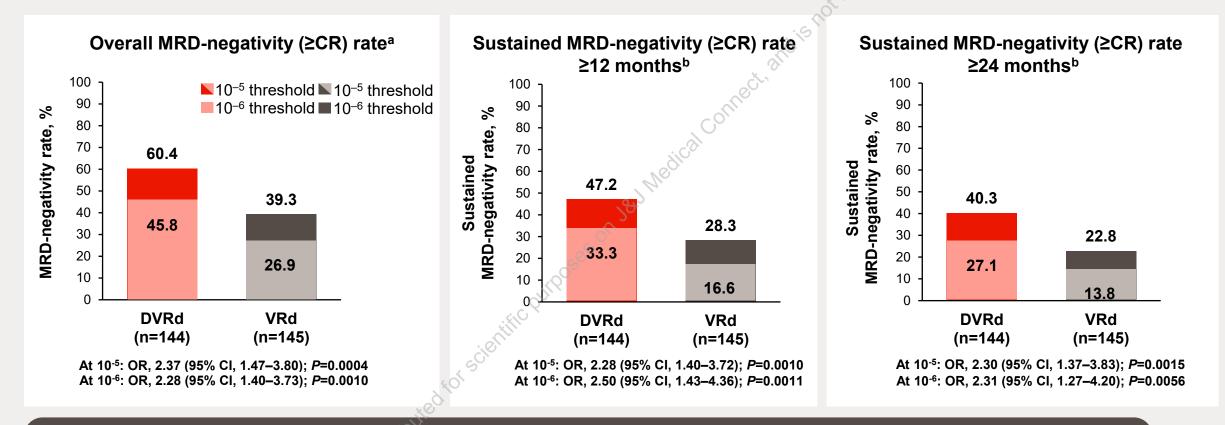
CEPHEUS TIE Subgroup: Overall and Sustained MRD-Negativity ≥CR Rates


scientific purposes on J&J Medical Connect. and to

DVRd significantly increased overall MRD-negativity rates at 10⁻⁵ and 10⁻⁶ vs VRd

^aThe proportion of patients who achieved MRD negativity and ≥CR. ^bSustained MRD negativity was defined as 2 consecutive MRD negative reads ≥12 months (±1) or 24 months (±3) apart with no MRD positive result in between. CR, complete response; DVRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; MRD, minimal residual disease; OR, odds ratio; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone.

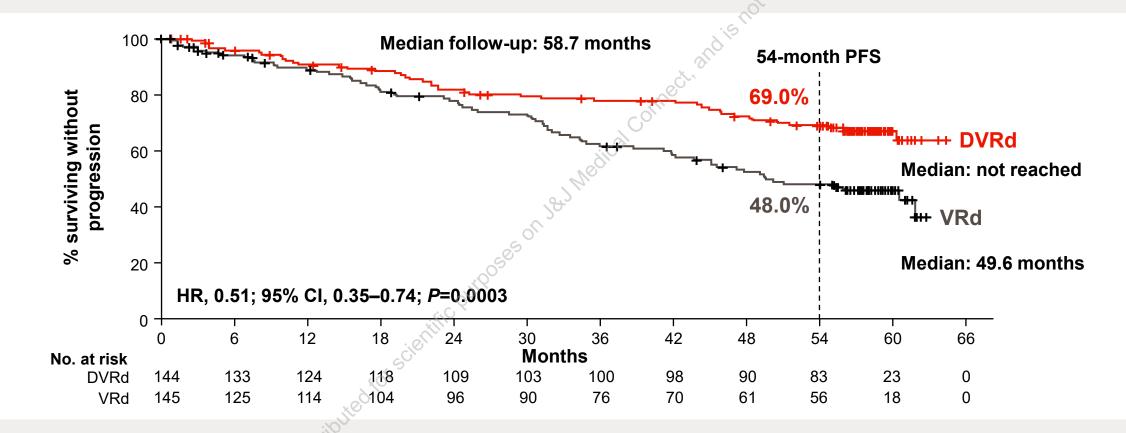
CEPHEUS TIE Subgroup: Overall and Sustained MRD-Negativity ≥CR Rates



DVRd significantly increased overall MRD-negativity rates at 10⁻⁵ and 10⁻⁶ vs VRd Almost 4 out of 5 patients with MRD-negative ≥CR (10⁻⁵) sustained response for ≥1 year

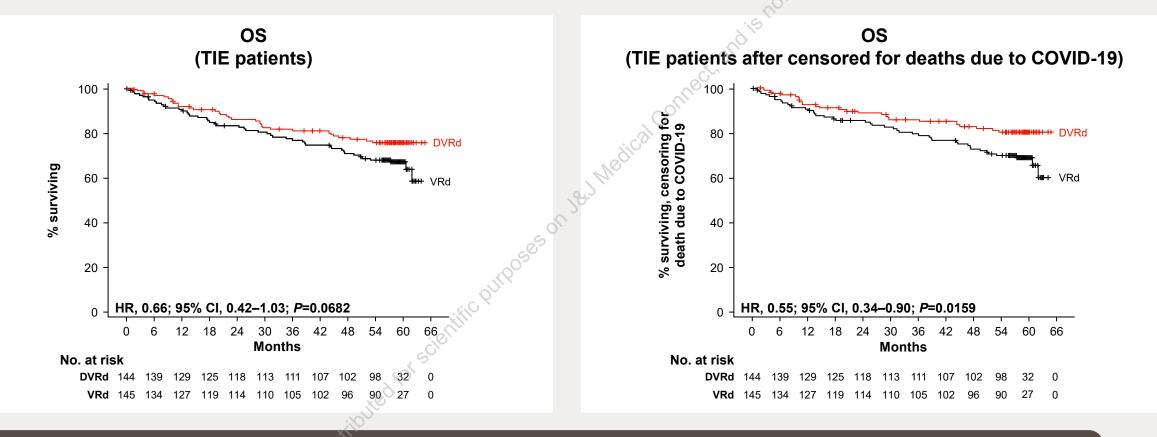
^aThe proportion of patients who achieved MRD negativity and ≥CR. ^bSustained MRD negativity was defined as 2 consecutive MRD negative reads ≥12 months (±1) or 24 months (±3) apart with no MRD positive result in between. CR, complete response; DVRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; MRD, minimal residual disease; OR, odds ratio; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone.

CEPHEUS TIE Subgroup: Overall and Sustained MRD-Negativity ≥CR Rates



DVRd significantly increased overall MRD-negativity rates at 10⁻⁵ and 10⁻⁶ vs VRd Almost 4 out of 5 patients with MRD-negative ≥CR (10⁻⁵) sustained response for ≥1 year 2 out of 3 patients with MRD-negative ≥CR (10⁻⁵) sustained response for ≥2 years

^aThe proportion of patients who achieved MRD negativity and ≥CR. ^bSustained MRD negativity was defined as 2 consecutive MRD negative reads ≥12 months (±1) or 24 months (±3) apart with no MRD positive result in between. CR, complete response; DVRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; MRD, minimal residual disease; OR, odds ratio; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone.


CEPHEUS TIE Subgroup: Progression-Free Survival

DVRd significantly improved PFS, with a 49% reduction in the risk of disease progression or death – greater than the ITT population (43% reduction in risk with DVRd vs VRd)¹

DVRd, daratumumab plus bortezomib, lenalidomide, and dexamethasone; HR, hazard ratio; ITT, intent to treat; PFS, progression-free survival; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone. 1. Usmani SZ, et al. *Nat Med* 2025. doi: 10.1038/s41591-024-03485-7.

CEPHEUS TIE Subgroup: Overall Survival

OS trended favorably for the DVRd arm and was significant when censoring for death due to COVID-19; OS HR improved in the TIE subgroup compared with the ITT population

DVRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; HR, hazard ratio; ITT, intent to treat; OS, overall survival; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone

CEPHEUS TIE Subgroup: Overall MRD-Negativity (10⁻⁵) With ≥CR and PFS in Prespecified Subgroups

MRD negativity						PFS					
at 10 ⁻⁵	Odds ratio a	and 95% Cl	DVRd	VRd	Odds ratio	Hazard ratio and 95% Cl	DV	Rd	VRd		Hazard ratio (95% CI)
	Sex	1	n/N (%)	n/N (%)	(95% CI)	Sex	Event/N	mPFS (months)	Event/N	mPFS (months)	
	Male		42/65 (64.6)	28/82 (34.1)	3.52 (1.78–6.97)	Male —	15/65	NE	42/82	47.9	0.34 (0.19–0.61)
	Female	+ -	45/79 (57.0)	29/63 (46.0)	1.55 (0.80–3.02)	Female	29/79	NE	27/63	NE	0.78 (0.46–1.31)
	Age		43/13 (31.0)	23/03 (40.0)	1.55 (0.00–5.02)	Age			2.700		0.70 (0.40 1.01)
	<70 years		26/35 (74.3)	15/35 (42.9)	3.85 (1.40–10.59)	<70 years	11/35	NE	16/35	NE	0.59 (0.27–1.28)
	≥70 years	⊢● -1	61/109 (56.0)	42/110 (38.2)	2.06 (1.20–3.53)	≥70 years →	33/109	NE	53/110	49.4	0.50 (0.33–0.78)
	Region				,	Region					
	Europe	┝●┥	54/96 (56.3)	37/90 (41.1)	1.84 (1.03–3.30)	Europe	29/96	NE	44/90	49.6	0.51 (0.32-0.82)
N	orth America	+	20/31 (64.5)	12/28 (42.9)	2.42 (0.85–6.92)	North America 🛶 🕂	8/31	NE	12/28	50.2	0.45 (0.18–1.11)
	Other		8/27 (29.6)	13/17 (76.5)	7.72 (l.92–31.06)	Other -	7/17	NE	13/27	NE	0.91 (0.36–2.28)
	Weight					Weight					
	≤65 kg		31/46 (67.4)	19/47 (40.4)	3.05 (1.30–7.11)	≤65 kg ⊢_ ● -+	13/46	NE	19/47	NE	0.57 (0.28–1.15)
	>65–85 kg		39/69 (56.5)	20/64 (31.3)	2.86 (1.40–5.82)	>65–85 kg ⊷	23/69	NE	31/64	49.2	0.58 (0.34–1.00)
	>85 kg	- •'	17/29 (58.6)	18/34 (52.9)	1.26 (0.46–3.42)	>85 kg	8/29	NE	19/34	42.2	0.38 (0.17–0.89)
	ISS				S	ISS					
	I		33/50 (66.0)	20/48 (41.7)	2.72 (1.20–6.17)	I ⊢ ●- ·	15/50	NE	21/48	60.6	0.58 (0.30-1.12)
	II	+	32/54 (59.3)	25/57 (43.9)	1.86 (0.88–3.96)		14/54	NE	28/57	49.4	0.41 (0.21–0.77)
	111		22/40 (55.0)	12/40 (30.0)	2.85 (1.14–7.15)	III ⊢ ●-†	15/40	NE	20/40	33.6	0.61 (0.31–1.19)
Cyto	genetic risk					Cytogenetic risk					
	High risk 🛏		10/20 (50.0)	9/18 (50.0)	1.00 (0.28–3.57)	High risk ———	9/20	NE	11/18	31.7	0.82 (0.33-2.03)
S	Standard risk ECOG PS	 -	66/105 (62.9)	43/111 (38.7)	2.68 (1.54–4.64)	Standard risk —— ECOG PS	28/105	NE	45/111	60.6	0.54 (0.33–0.86)
	0	+ -	30/52 (57.7)	25/57 (43.9)	1.75 (0.82–3.73)		10/52	NE	24/57	<u> </u>	0.22 (0.46, 0.60)
	≥1		57/92 (62.0)	32/88 (36.4)	2.85 (1.56–5.22)	≥1 ⊷	34/92	NE	45/88	60.6 47.2	0.33 (0.16–0.69)
	L		01/02 (02.0)	52(00 (50.4)	2.00 (1.00-0.22)		54/52		43/00	47.2	0.63 (0.40–0.99)
	0.1	1 10 100		6		0.1 1 1	D				
	Favor VRd	Favor DVRd		ý,		Favor DVRd Favor VF	24				
			25	<u>></u>			\u				

Treatment effect was generally consistent across subgroups

CR, complete response; DVRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; ECOG PS, Eastern Cooperative Oncology Group performance status; ISS, International Staging System; mPFS, median progression-free survival; MRD, minimal residual disease; NE, not estimable; PFS, progression-free survival; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone.

CEPHEUS TIE Subgroup: Safety

Safety overview

Event, n (%)	DVRd (n=144)	VRd (n=142)
Any TEAE	144 (100)	142 (100)
Grade 3 and 4	115 (79.9)	113 (79.6)
Grade 5 non–COVID-19	13 (9.0)	12 (8.5)
Grade 5 COVID-19 ^a	6 (4.2)	1 (0.7)
Any serious TEAE	104 (72.2)	99 (69.7)
TEAE leading to discontinuation of all study treatment	11 (7.6)	27 (19.0)
Total deaths during study	33 (22.9)	46 (32.4)
Exposure-adjusted grade 5 TEAE rate, patient-months	0.27/100	0.31/100
Second primary malignancies	14 (9.7)	16 (11.3)

Common (≥5%) grade 3 or 4 TEAEs of interest

Event, n (%)	DVRd (n=144)	VRd (n=142)			
Neutropenia	63 (43.8)	45 (31.7)			
Thrombocytopenia	44 (30.6)	33 (23.2)			
Anemia	18 (12.5)	18 (12.7)			
Diarrhea	17 (11.8)	14 (9.9)			
Fatigue	13 (9.0)	15 (10.6)			
COVID-19 ^b	14 (9.7)	5 (3.5)			
Pneumonia	20 (13.9)	17 (12.0)			
Peripheral sensory neuropathy	Any Grade: 86 (59.7) Grade 3/4: 14 (9.7)	Any Grade: 90 (63.4) Grade 3/4: 12 (8.5)			

DVRd showed no additional safety concerns in this older, frailer TIE subgroup compared with the ITT population of CEPHEUS

^aDeaths on or within 30 days of treatment. ^bGroup term. DVRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; ITT, intent to treat; TEAE, treatment-emergent adverse event; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone.

CEPHEUS TIE Subgroup: Conclusions

- The phase 3 CEPHEUS trial previously demonstrated improved efficacy outcomes with DVRd vs VRd in patients with TIE or transplant-deferred NDMM¹
- In this post hoc analysis of the TIE subgroup, DVRd improved depth and duration of response:
 - Overall MRD negativity:
 60.4% vs 39.3% at 10⁻⁵; 45.8% vs 26.9% at 10⁻⁶
 - 12-month sustained MRD negativity: 47.2% vs 28.3% at 10⁻⁵; 33.3% vs 16.6% at 10⁻⁶
 - 24-month sustained MRD negativity: 40.3% vs 22.8% at 10⁻⁵; 27.1% vs 13.8% at 10⁻⁶
- Risk of disease progression or death was 49% lower for DVRd vs VRd; HR, 0.51
- OS favored DVRd (HR, 0.66), especially when censoring for death due to COVID-19 (HR, 0.55)
- No additional safety concerns in this older, frailer TIE subgroup compared with the ITT

Results of this post hoc CEPHEUS TIE subgroup analysis reinforce DVRd as standard of care for the treatment of TIE NDMM

CEPHEUS: NCT03652064. DVRd, daratumumab, bortezomib, lenalidomide, and dexamethasone; HR, hazard ratio; ITT, intent to treat; MRD, minimal residual disease; NDMM, newly diagnosed multiple myeloma; OS, overall survival; TIE, transplant ineligible; VRd, bortezomib, lenalidomide, and dexamethasone. 1. Usmani SZ, et al. *Nat Med* 2025. doi: 10.1038/s41591-024-03485-7.

CEPHEUS: Acknowledgments

- We thank the patients who participated in this study and their families/caregivers, staff members at the study sites, and the data and safety monitoring committee
- This study was funded by Johnson & Johnson

Medical writing support was provided by Shuang Li, PhD, of Eloquent Scientific Solutions, and funded by Johnson & Johnson.