Safety and Efficacy Results of Nipocalimab in Adolescents with Generalized Myasthenia Gravis During Active-Treatment and Long-Term Extension Phases: vibrance-mg Phase 2/3 Study

Jonathan Strober,¹ Shawn Black,² Marie Fitzgibbon,³ Saunder Bernes,⁴ Akiyuki Uzawa,⁵ Yasuhiro Kimoto,⁶ Keiko Ishigaki,⁷ Tuan Vu,⁸ Erin E. Neil Knierbein,⁹ Hideki Shimomura,¹⁰ Erik H. Niks,¹¹ Dan Huang,¹² Yaowei Zhu,² Sindhu Ramchandren¹³

¹UCSF Benioff Children's Hospital, San Francisco, CA, USA; ²Johnson & Johnson, Spring House, PA, USA; ³Johnson & Johnson, Raritan, NJ, USA; ⁴Phoenix Children's Hospital, Phoenix, AZ, USA; ⁵Chiba University Hospital, Chiba, Japan; ⁶Department of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; ⁷Department of Pediatrics, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan; ⁸University of South Florida, Morsani College of Medicine, Tampa, FL, USA; ⁹Department of Pediatrics, University of Michigan Health, Ann Arbor, MI, USA; ¹⁰Department of Pediatrics, Hyogo Medical University School of Medicine, Nishinomiya, Japan; ¹¹Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands; ¹²Johnson & Johnson, Neuss, Germany; ¹³Johnson & Johnson, Titusville, NJ, USA

Scan the QR code.
The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

Presented by Jonathan Strober at the Myasthenia Gravis Foundation of America (MGFA) Scientific Session of the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) Annual Meeting, San Francisco, California, October 29th 2025.

DISCLOSURES

Jonathan Strober, MD

Consultant fees from Pfizer.

Advisory/data monitoring board fees from Scholar Rock, argenx.

Speaker bureau fees from Biogen.

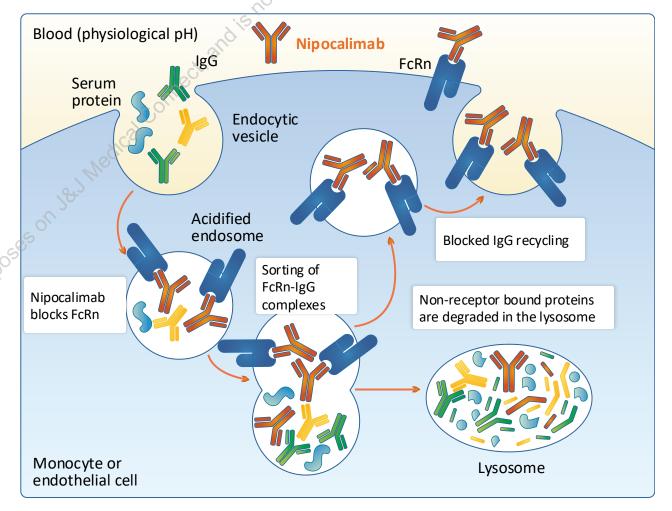
Research support from Anonymous, PTC, Fibrogen, Johnson & Johnson, Biohaven.

Paid editor, associate editor, or editorial advisory board member for Pediatric Neurology.

Expert witness fees from many law firms.

2

INTRODUCTION


Nipocalimab is a fully human IgG1 monoclonal antibody that binds to FcRn with high specificity and affinity blocking its interaction with IgG.^{1,2}

In the pivotal phase 3 Vivacity-MG3 study involving adults with gMG, nipocalimab treatment lowered levels of circulating IgG and pathogenic IgG autoantibodies.³

Patients receiving nipocalimab also demonstrated symptom improvement sustained over 24 weeks³ and up to 60 weeks in the open label extension.⁴

These results recently supported the US FDA approval of nipocalimab for the treatment of both adult and adolescent patients (≥12 years) with gMG.⁵

FDA=Food and Drug Administration, FcRn=neonatal Fc receptor, gMG=generalized myasthenia gravis, IgG=immunoglobulin. This figure was previously presented at the MGFA Scientific Session of the AANEM Annual Meeting and AANEM Annual Meeting, Savanah, Georgia, October 15–18, 2024.

1. Leu JH et al. Front Neurosci. 2024;18:1302714. 2. Ling et al. Clin Pharmacol Ther. 2019;105:1031–1039. 3. Antozzi, et al. Lancet Neurol. 2025;24:105–116. 4. Antozzi C et al. Poster presented at the American Academy of Neurology (AAN) Annual Meeting; San Diego, CA, USA; April 5–9, 2025. 5. IMAAVYTM (nipocal imab-aahu) injection for intravenous use [Package Insert] Horsham, PA; Janssen Pharmaceutical Companies, 2025.

OBJECTIVES

To evaluate the effect of nipocalimab on pharmacodynamics (IgG), safety and efficacy in adolescents aged 12 to <18 years with gMG who exhibit an insufficient clinical response to SOC therapy.

Here, we have summarized the study results in through a clinical cut-off of August 23, 2024.

METHODS

- Vibrance-mg is a global, multicenter, open-label Phase 2/3 study evaluating nipocalimab + SOC in adolescents (Cohort 1) and children with gMG.
- Cohort 1 participants received an initial loading dose of nipocalimab 30 mg/kg IV, followed by 15 mg/kg Q2W. During the LTE, dosing could be adjusted at the investigator's discretion to either 15 mg/kg Q2W or 30 mg/kg Q4W.
- Primary endpoints included the effect of nipocalimab on total serum IgG levels, along with assessments of safety and tolerability. Secondary endpoints evaluated treatment response through changes in QMG and MG-ADL scores.
- Results for Cohort 1 (adolescents) are reported from the AT phase (Day 1 to Week 24) expanding on previously reported data from 7 patients to now include 8 patients. Efficacy data through the LTE (up to Week 72) and safety data until data cutoff are presented.

vibrance-mg (NCT05265273): Study Design

A global, multi-center, open label phase 2/3 study of nipocalimab + SOC in children and adolescents with gMG

- Adolescents aged 12 to <18 years
- Diagnosed with gMG, MGFA Class II–IV
- Seropositive for anti-AChR or anti-MuSK autoantibodies
- Suboptimal response to current stable therapy for gMG per investigator

Screening period (≤4 Weeks)

Participants screened N=9

Active treatment phase (24 Weeks)

Eligible participants N=8°

Treatment
Week 0 (Day 1):
Nipocalimab 30 mg/kg IV LD + SOC
Week 2 to Week 22:
Nipocalimab 15 mg/kg Q2W IV + SOC

<u>Status</u> N=7 (87.5%) completed N=1 (12.5%) ongoing Long-term extension phase (optional)

Participants entered LTE N=6^b

Treatment^c
Nipocalimab 15 mg/kg IV
O2W + SOC

orNipocalimab 30 mg/kg IV

Q4W + SOC
Status

N=1 (16.7%) discontinued N=2 (33.3%) ongoing N=3 (50%) completed

Week 72 through LTE

Safety follow-up^d

^aOne participant failed during the Screening phase. ^bOut of 7 participants who completed the AT phase, 6 entered the LTE phase. ^cFour participants switched from Q2W to Q4W at various times and were ongoing in LTE at data cut-off. ^dParticipants who withdraw or discontinue after receiving any amount of study intervention will be required to complete a safety follow-up visit 8 weeks after their last dose. **AChR**=acetylcholine receptor, **AT**=active treatment, **gMG**=generalized myasthenia gravis, **IV**=lntravenous, **LD**=loading dose, **LTE**=long-term extension, **MGFA**=Myasthenia Gravis Foundation of America, **MuSK**=muscle-specific kinase, **Q2W**=every 2 weeks, **Q4W**=every 4 weeks, **SO** C=standard-of-care. This figure has been adapted from the figure previously presented at the MGFA Scientific Session of the AANEM Annual Meeting and AANEM Annual Meeting; Savanah, Georgia, USA; October 15–18. 2024.

Study Endpoints

Primary Endpoint

- The effect of nipocalimab on total serum IgG
- Safety and tolerability

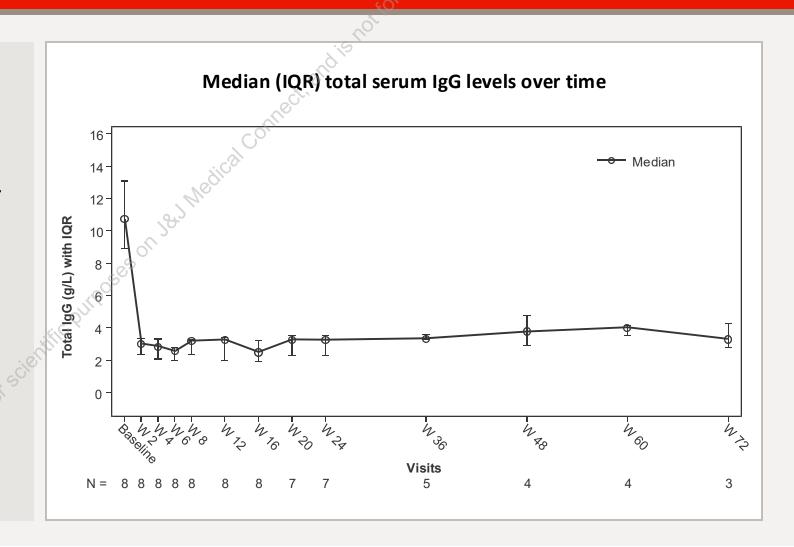
Secondary Endpoints

The effect of nipocalimab on:

- MG-ADL score
- QMG score

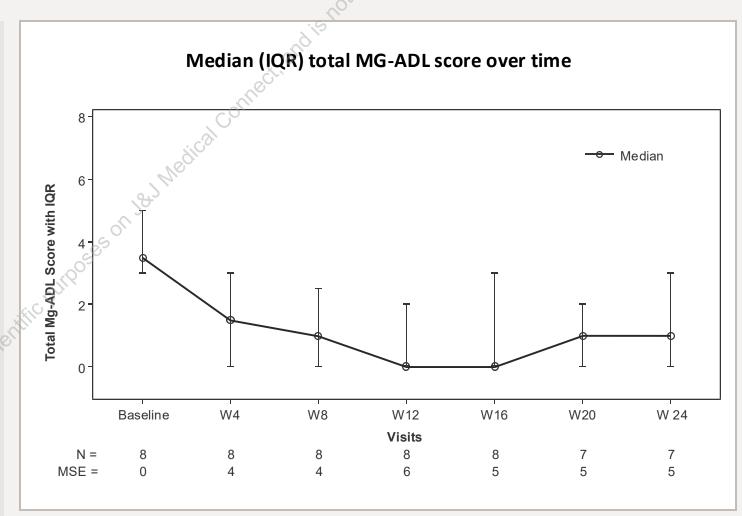
Results are presented from an analysis of adolescent participants in the ongoing study

Demographics and Baseline Characteristics

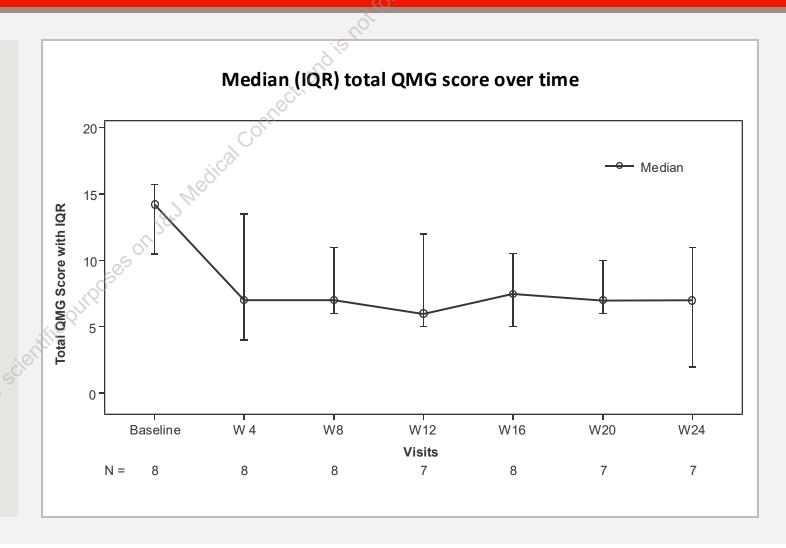


Demographics and AT phase baseline characteristics of adolescent participants in cohort 1

Characteristics	Cohort 1 (N=8)	Characteristics	Cohort 1 (N=8)
Age, years	13.5 (12–16)	Baseline MG-ADL total score, median (IQR)	3.5 (3.0–5.0)
Sex, Female, n (%)	7 (87.5)	Autoantibody type, anti-AChR+, n (%)	8 (100.0)
Race, n (%)		Baseline QMG total score, median (IQR)	14.3 (10.5–15.8)
Asian	5 (62.5)	Age at onset of MG, years	10.5 (0.5–13.4)
Black or African American	1 (12.5)	Baseline MGFA Clinical Classification, n (%)	
Unknown	2 (25.0)	lla	4 (50.0)
Ethnicity, n (%)	C. Pull	IIIa	3 (37.5)
Hispanic or Latino	1 (12.5)	IIIb	1 (12.5)
Not Hispanic or Latino	6 (75.0)	Participants with ≥1 concomitant MG	8 (100.0)
Unknown	1 (12.5)	medications, n (%)	
Weight, kg	43.1 (30.9–95.5)	Immunosuppressants	6 (85.7)
BMI, kg/m ²	18.5 (15.9–37.2)	Corticosteroids for systemic use	5 (71.4)
Duration of MG, years	3.6 (0.8–11.5)	Other nervous system drugs ^a	3 (42.9)


Primary Efficacy Endpoint: Total Serum IgG

- Nipocalimab treatment resulted in a rapid and sustained IgG reduction in adolescent participants with gMG.
- Median (IQR) serum IgG in g/L was 10.7 (8.9;
 13.1) at baseline and 3.2 (2.3; 3.5) at Week 24
 - Effect was sustained in the LTE to
 3.3 (2.8; 4.3) at Week 72.
- Median (IQR) percent CFB to
 Week 2 was -72.6% (-79.1; -70.1) and to
 Week 24 was -73.3% (-78.7; -62.8)
 - Effect was generally sustained in the LTE to −60.6% (−72.0; −48.8) at Week 72.


Secondary Efficacy Endpoint: MG-ADL Score

- A clinically meaningful reduction in MG-ADL score was observed by Week 4 and was maintained through both AT and LTE phases.
 - Baseline: Median (IQR) score of 3.5 (3.0; 5.0)
 - Week 4: Reduced to 1.5 (0.0; 3.0)
 - Week 24: Maintained at 1.0 (0.0; 3.0)
- 2 out of 3 participants who completed the LTE up to Week 72 maintained symptom improvement; one patient had worsening MG-ADL scores without any documented AE of MG worsening at Week 72.
- Over half of participants had Minimal Symptom Expression (MG-ADL score of 0 or 1) at each time point during AT and/or LTE

Secondary Efficacy Endpoints: QMG Score

- A clinically meaningful reduction in QMG score was observed by Week 4 and maintained through both AT and LTE phases.
 - Baseline: Median (IQR) score of 14.3 (10.5; 15.8).
 - Week 4: Reduced to 7.0 (4.0; 13.5).
 - Week 24: Maintained at 7.0 (2.0; 11.0).
- 2 out of 3 participants completing the LTE up to Week 72 maintained symptom improvement; one patient had worsening QMG scores without any documented AE of MG worsening at Week 72.

Primary Safety Endpoint: Overall Safety

- Nipocalimab was generally well-tolerated across both the AT and LTE phases.
- No SAE or AEs leading to discontinuation were reported in the AT phase.
- One participant experienced an SAE (gMG worsening) after Week 72 in LTE (at Week 84).
- Another participant had an AE (influenza) (~Week 30) that led to temporary treatment discontinuation.
- No AEs of special interest were reported during the study.

Summary of TEAEs in AT and LTE phases

- Olliect, o	AT phase (n=8)	LTE phase (n=6)
Average duration of follow-up, in weeks (SD)	24.2 (3.5)	44.3 (29.3)
Patients with ≥1 TEAEs	8 (100.0)	4 (66.7)
Related TEAEs	3 (37.5)	1 (16.7)
Patients with TEAEs leading to death	0	0
Patients with SAEs	0	1 (16.7) ^a
TEAEs leading to temporary discontinuation of study treatment ^b	0	1 (16.7) ^c
AEs leading to termination of study participation	0	0
COVID-19 associated TEAEsd	2 (25.0)	0
AESIe	0	0

Primary Safety Endpoint: Adverse Events

Number of patients with TEAEs in AT and LTE phases

	AT phase (n=8)	LTE phase (n=6)
Participants with ≥1 TEAEs	8 (100.0)	4 (66.7)
Nasopharyngitis	3 (37.5)	2 (33.3)
COVID-19	2 (25.0)	0
Upper respiratory tract infection	1 (12.5)	1 (16.7)
Headache	1 (12.5)	0
Migraine	1 (12.5)	1 (16.7)
Somnolence	1 (12.5)	0
Abdominal pain upper	1 (12.5)	0 600
Diarrhea	1 (12.5)	1 (16.7)
Glossitis	1 (12.5)	0
Anemia	1 (12.5)	.80 0
Face edema	1 (12.5)	0
Blood cholesterol increased	1 (12.5)	0
Hypercholesterolemia	1 (12.5)	0
Muscle spasms	1 (12.5)	1 (16.7)
Bacterial vaginosis	1 (12.5)	0
Influenza	1 (12.5)	2 (33.3)

erect.	AT phase (n=8)	LTE phase (n=6)
Participants with ≥1 TEAEs	8 (100.0)	4 (66.7)
Nausea	1 (12.5)	0
Stomatitis	1 (12.5) ^a	0
Vomiting	1 (12.5)	0
Fatigue	1 (12.5)	1 (16.7)
Blood pressure increased	1 (12.5)	0
White blood cell count increased	1 (12.5)	0
Seasonal allergy	1 (12.5)	0
Hordeolum	0	1 (16.7)
Tinea versicolour	0	1 (16.7)
Injection site swelling	0	1 (16.7)
Nasal congestion	0	1 (16.7)
Productive cough	0	1 (16.7) ^b
Rash	0	1 (16.7)
Rash pruritic	0	1 (16.7)
Low density lipoprotein increased	0	1 (16.7)
Worsened myasthenia gravis	0	1 (16.7) ^c

- Nasopharyngitis (37.5%) and COVID-19 (25.0%) were most common TEAEs in AT phase (median follow-up: 24.0 [18–31]).
- Influenza (33.3%) and nasopharyngitis (33.3%) were most common in LTE phase (median Follow-up: 44.5 [range: 12-79]).

CONCLUSIONS

In adolescents with gMG (12 to <18 years of age), nipocalimab demonstrated a rapid, substantial and sustained reduction in total serum IgG levels over 24 weeks, with effects maintained through Week 72 in LTE.

- Clinically meaningful improvements in MG-ADL and QMG scores were achieved over 24 weeks of the AT and sustained in most participants through Week 72 in LTE.
- Treatment was well-tolerated in adolescents with gMG, with a favorable safety profile observed throughout the study.
- Vibrance-mg is the first study to evaluate an FcRn blocker in adolescents with gMG, and nipocalimab is now the first FcRn blocker approved for treating both adult and adolescent patients with gMG, addressing the unmet needs across this broad population.