ADME Profiling of Targeted Oral Peptide JNJ-77242113 (lcotrokinra)

Beverly Knight¹, Shannon Dallas², Saro Mardirosian², Jianyao Wang², Aline Laenen³, Laurent Leclercq³, Darren Moss³, Karen DiLoreto², Seonghee Park², David Polidori¹, Carlo Sensenhauser², Anthony Ndifor¹, Yifan Shi², Shefali Patel², Anne Fourie⁴, Raymond Patch⁴, Chengzao Sun^{4,5}, Mario Monshouwer³ ¹Johnson & Johnson, San Diego, CA, USA. ²Johnson & Johnson, Spring House, PA, USA. ³Johnson & Johnson & Johnson & Johnson & Johnson, Beerse, Belgium. ⁴Former Johnson & Johnson & Johnson & Johnson, Spring House, PA, USA. ³Johnson & Johnson & Johns

Background

The interleukin (IL)-23 pathway plays a key role in the pathogenesis of psoriasis (PsO), psoriatic arthritis, and inflammatory bowel disease (IBD)¹

Icotrokinra (formerly JNJ-77242113)

- A first-in-class, targeted oral peptide that inhibits IL-23 signaling by binding to the IL-23 receptor (R)
- Induced selective IL-23 pathway inhibition in preclinical models (in vitro and in vivo), and pharmacodynamic response in healthy volunteers⁴
- Demonstrated significant, durable skin clearance with no safety signals through 1 year in Phase 2 PsO studies^{5,6}

Objectives

- Profile icotrokinra in vitro and in vivo to elucidate:
- Absorption, distribution, metabolism, and excretion (ADME) properties
- **Drug-drug interaction (DDI) potential**

Results

Icotrokinra exhibited low non-saturable permeability in LLC-PK1 cell monolayers

• Efflux ratios in LLC-PK1-MDR1 were <2, indicating that icotrokinra is not a P-gp substrate

Bi-directional transport of [14C]-icotrokinra in the absence or presence of a P-gp inhibitor (valspodar)								
		LLC-PK1-MDR1			LLC-PK1-Mock			
[¹⁴ C]-icotrokinra concentration, µM	Valspodar (2 µM)	P _{app} (A-B) ^a , nm/sec	P _{app} (B-A) ^b , nm/sec	ER°	P _{app} (A-B) ^a , nm/sec	P _{app} (B-A) ^b , nm/sec	ER°	
1	—	1.96	1.98	1.0	1.90	3.40	1.8	
3	—	1.61	1.56	1.0	1.67	2.58	1.5	
10	_	1.25	1.55	1.2	1.64	1.64	1.0	
30	—	1.23	1.43	1.2	1.40	1.91	1.4	
100	—	1.02	0.69	0.7	1.30	1.29 ^d	1.0	
300	_	0.90	0.61	0.7	1.38	2.51	1.8	
1	+	1.67	1.88	1.1	1.77	1.93	0.8	
3	+	1.47	1.84	1.3	1.91	1.79	0.9	
[³ H] digoxin (10 µM)		8.47	118.5	14	20.3	79.4	3.9	
[³ H] digoxin (10 µM)	+	35.1	31.6	0.9	33.2	36.6	1.1	

Data presented as mean of triplicate measurements. ^aP_{app} from apical-to-basolateral direction (A-B). ^bP_{app} from basolateral-to-apical direction (B-A). ^cER=P_{app}(B-A)/P_{app}(A-B). ^dn=2. **A**=apical; **B**=basolateral; **ER**=efflux ratio; **P_{app}=**apparent permeability; **P-gp**=P-glycoprotein; **sec**=second.

Icotrokinra showed low and non-saturable protein binding across species

 Icotrokinra (0.0013 -0.13 μM) also exhibited low blood partitioning and no preferential binding to RBCs, with mean observed K_{WB/P} and K_{RBC/P} values of <1 across species

Icotrokinra was not a substrate or inhibitor of CYP enzymes or drug transporters

Minor inhibition of OATP1B1/3 was observed, but no impact expected at clinical concentrations

Substrate/inhibition towards

Transporter	Substrate (Yes/No)
OATP1B1	No
OATP1B3	No
OAT1	No
OAT3	No
OCT2	No
MATE1	No
MATE2-K	No
BSEP	NT
BCRP	No
P-gp	Νο
BCRP P-gp	No No

employee: Johnson & Johnson, San Diego, CA, USA; Former shareholder: Johnson & Johnson, Spring House, PA, USA; Former employee: Pinnacle Medicines, Doylestown, PA, USA; Former employee: Johnson & Johnson, Spring House, PA, USA; Former shareholder: Johnson & Johnson

Methods

Property	Assay	Property	Rat	Monkey	
Bi-directional membrane permeability	System: LLC-PK1-MDR1/mock-transfected cell monolayers seeded in 24-well inserts (100,000 cells/cm ²) Conditions: ±valspodar at 37°C for 4 h Analysis method: Liquid scintillation counter	PK evaluation	Animals: Sprague Dawley; N=3 fasted/group Tissue collected: Blood through 24 h Analysis method: LC-MS/MSª	Animals: Cynomolgus; N=4 fasted/group Tissue collected: Blood through 24 h Analysis method: LC-MS/MS ^a	
Plasma protein binding	System: Classical equilibrium dialysis (Dianorm) Conditions: 37°C for 16 h Analysis method: LC-MS/MS		Animals: Lister Hooded; N=6	Animals: Cynomolgus; N=2/time point Dose and route: IV (1 mg/kg) icotrokinra Tissue collected: Various tissues at 1.5 and 6 h Analysis method: LC-MS/MS°	
Blood-to-plasma partitioning	System: Whole blood from rat, dog, monkey, and human Conditions: 37°C for up to 2 h Analysis method: LC-MS/MS	I ISSUE distribution	Analysis method: QWBA ^b	Animals: Cynomolgus; N=4 Dose and route: Single IV (2mg/kg) risankizumab Tissue collected: Various tissues at day 7 Analysis method: Immunoassay ^d	
Metabolic stability	System: (1) hepatocytes (1.0 million cells/mL) from rat, monkey, and human; (2) GI mucosa (20% [w:v]) from rat, monkey, and human; (3) fecal homogenates (6.25% [w:v]) from rat, monkey, and human Conditions: 37°C (1) up to 120 min; (2 & 3) up to 24 h Analysis method: LC-MS/MS	Metabolism	Animals: Sprague Dawley (intact); N=2 fasted Tissue collected : Plasma, urine, and feces through 24 h Analysis method: LC-radiometric detection system coupled with tandem MS ^e	Animals: Cynomolgus; N=2 fed Tissue collected: Blood through 48 h and excreta through 96 h	
DDI	System: Transfected cell systems or vesicles Conditions: Triplicates prototypical substrates and ± inhibitors at 37°C for 0.5 h to 4 h depending on the assay Analysis method: LSC or LC-MS/MS		Animals: Sprague Dawley (intact); N=3 fed Tissue collected : Cage wash, urine, and feces through 96 h Analysis method: Total radioactivity by LSC	Analysis method: Total radioactivity by LSC; Metabolic profiles by LC-radiometric detection system coupled with tandem MS ^e	

Icotrokinra was stable in relevant tissues across species, including human

Icotrokinra exhibited dose-proportional pharmacokinetics with F<1%

Pla	asma phar	macokin	etics of icot	rokinra in ra	ats and monk	eys followi	ng intraveno	us or oral do	osing
osing oute	Animal	Dose , mg/kg	CL , mL/min/kg	V _{ss} , mL/kg	C _{max} , ng/mL	t_{max}, h	AUC_{0-∞}, ng*h/mL	t_{1/2}, h	F , %
1	Rat ^a	2	8.77	459			3,810	0.762	
	Monkey ^{b,c}	[°] 1	1.44	299			12,000	3.47	
0	Rat ^a	20			8.68	2 ^d	44.2 ^e	2.36 ^f	0.12 ^e
	Rat ^{a,g}	30	- 0		134	0.5	181	1.76	0.32
	Rat ^{a,g}	100			76.3	1	317	h 	0.17
	Rat ^{a,g}	300			134	1	1,120	h 	0.11
	Monkey ^b	2.5			11.0	2 ^d	82.2 ^e	5.58 ^e	0.27 ^e
	Monkey ^b	7.5			27.8	1 ^d	226 ⁱ	6.41 ⁱ	0.25 ⁱ
	Monkey ^b	22.5			84.3	1.5 ^d	812 ⁱ	5.60 ⁱ	0.30 ⁱ
ues are presen	nted as mean excep	ot as noted. ªN=	3. ^b N=4. ^c N=3: One an	imal showed an extra	ivascular administration	profile rather than a	typical IV PK profile a	nd so was excluded fro	om PK analysis.

sparse sampling was used, with 3 rats/time point, and composite profiles were used for PK parameter estimation. ^hInsufficient elimination phase to calculate $t_{1/2}$. ⁱN=3: Other animals did not give sufficient data in elimination phase. AUC_{0-∞}=area under the plasma concentration-time curve from time zero extrapolated to infinity; CL=clearance; C_{max} =maximum plasma concentration; F=bioavailability; IV=intravenous; min=minute; PO= per os (oral gavage); $t_{1/2}$ = plasma elimination half-life; t_{max} =time to reach maximum plasma concentration; V_{ss} =volume of distribution at steady state.

otential of icotronkinra ransporters		Inhibi	Inhibitory potency of icotrokinra towards CYP450 isoforms in human hepatocytes						
Inhibitor (Yes/No)	Maximum Inhibition, % ^a	CYP enzyme	Probe substrate	Inhibitor (Yes/No)	Inhibition at 100 µM, %				
Νο	44 ^b	1A2	20 µM Phenacetin	No	19				
Νο	48°	2B6	10 µM Bupropion	No	<10				
Νο	-14 ^d	2C8	3 µM Amodiaquine	Νο	<10				
Νο	5 ^e	2C9	5 µM Diclofenac	Νο	<10				
Νο	-2 ^f	0.010							
Νο	-4 ^d	2019	5 µM S-(+)-Mephenytoin	Νο	<10				
Νο	9 g	2D6	2 µM Dextromethorphan	Νο	<10				
Νο	14 ^h				00				
Νο	15 ⁱ	2E1	45 µM Chlorzoxazone	Νο	30				
Νο	9 j	3A4	2 µM Midazolam	Νο	<10				

^aResults are presented as mean of triplicate measurements unless otherwise noted. Icotrokinra measured concentrations: ^b24.7 μM. ^c24.2 μM. ^d22.5 μM. ^e26.2 μM. μΜ. Icotrokinra concentration in P-gp inhibition assay: 1-600 μM; additional transporter assays (inhibition: 0-30 μM; substrate: 0.25-5 μM); CYP inhibition assay: 0-100 μM. BCRP= breast cancer resistance protein; BSEP=bile salt export pump; CYP=cytochrome P450; MATE=multidrug and toxin extrusion; min=minute; NT=not tested; OAT=organic anion transporter; OATP=organic anion transporting

Plasma concentrations in monkey exceeded IC₅₀ for inhibition of IL-23 signaling

Due to high potency, target coverage was achieved for 24 h for doses ≥2.5 mg/kg

maximal inhibitory concentration; **STAT**=signal transducer and activator of transcription.

cotrokinra IC₅₀ for IL-23-induced STAT3 phosphorylation in human peripheral blood mononuclear cells after 24 h (0.01 ng/mL). SD values below 0 are not plotted. IC₅₀=half-

aLLOQ=1 ng/mL. bLimit of reliable measurement=0.1-0.2 µg equiv/g. cLLOQ=5 ng/mL for tissue samples. dLLOQ=10 ng/mL. eLLOQ=0.5 ng/mL for plasma, 1 ng/mL for urine, and 100 mg/mL for feces. FIH=first in human. IV=intravenous; LLOQ=lower limit of quantification; PK=pharmacokinetic; QWBA=quantitative whole-body autoradiography.

Icotrokinra distributed mainly to the GI tract and kidneys of rats

Presence of icotrokinra in tissues is depicted in black

Icotrokinra was freely distributed to tissues relevant to inflammatory diseases

• Icotrokinra distributed to disease-relevant tissues more extensively than risankizumab

Tissue distribution of icotrokinra and risankizumab in monkeys

cotrokinra tissue concentration presented as tissue:plasma percentage. Risankizumab tissue concentration presented as tissue:serum percentag

Key Takeaways

Icotrokinra is a first-in-class, targeted oral peptide that potently and selectively blocks the IL-23R

Icotrokinra showed high stability compared to **typical peptides**

Due to its high potency, icotrokinra resulted in systemic target inhibition even with low oral bioavailability (typical of peptides)

Icotrokinra also demonstrated:

- ✓ Wide distribution to disease-relevant tissues
- ✓ No DDI risk
- Main route of elimination through feces as unchanged drug

• Renal excretion contributed to clearance of systemic drug (<1% of dose is bioavailable)

Fecal excretion of unabsorbed icotrokinra was the main route of elimination

Unchanged icotrokinra was the main drug-related component in urine and feces

Mostly unchanged drug was detected in rat and monkey plasma

- In humans (Phase 1)
 - Fecal excretion increased with dose (ranging from 37.2% at 10 mg to 80.7% at 1000 mg)
 - Urinary excretion of unchanged drug was low (<0.001%)
 - No metabolites were detected in human plasma or urine

	Mass balance of [^{1,}	^₄ C]-icotrokinra aı	nd its main m	netabolites a	fter oral	administratior
--	---------------------------------	--------------------------------	---------------	---------------	-----------	----------------

Analyte	Rat (0-24 h), % of dose			Monkey (0-96 h), % of dose			
	Feces	Urine	Total	Feces	Urine	Total	
Up to 14 metabolites	2.7	0.099	2.80	2.87	0.11	2.98	
Unchanged icotrokinra	72.8	0.056	72.9	64.2	0.86	65.1	
Sum	75.5	0.155	75.7	67.1	0.97	68.1	

Dose=300 mg/kg with target radioactivity of ~400 µCi/kg in rats and ~100 µCi/kg in monkeys